Skip to main content
Log in

The units of calcium conduction in Helix neurones

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 28 September 1978

Abstract

VOLTAGE-DEPENDENT membrane calcium currents, ICa, occur in muscle1,2, axons3,4 and nerve cell bodies5–9 but are not well characterised because of difficulties in separating them from other ionic currents, and inadequate spatial and temporal control of the clamp voltages used to examine them. As a result, information on the conduction process underlying ICa is limited. Recently two new techniques have been reported6,9,10 which overcome most of the problems associated with experimental investigations of ICa. We have used the suction pipette technique9,10, which combines methods of internal perfusion and voltage clamp, to study ICa in isolated nerve cell bodies of the snail, Helix aspersa. The time course of ICa in response to step changes in membrane potential was readily examined and, in addition, very small fluctuations (noise) in current were also observed. Assuming that the fluctuations represent current contributions from a population of independent two-state (conducting/nonconducting) unit conductances, 〈ICa〉, the average value of the fluctuations in the steady state, and σ2, the variance of the fluctuations can be used to estimate a single unit conductance, γca. Analysis of spontaneous current noise has been used previously to obtain γ values for the Na and K systems in several axon membranes11–14, and γ values for acetylcholine-sensitive conductances at the neuromuscular junction15,16 and in molluscan neurones17, but γCa is unknown. Unit ion conductances of a few picosiemens or greater have been reported and where comparisons can be made, these values are similar to those estimated using quite different techniques such as tetrodotoxin binding18–21. We found γCa to be less than 1 pS however, and we suggest that the low value results from the effect of a Ca2+ binding site in the conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fatt, P. & Katz, B. J. Physiol., Lond. 120, 171–186 (1953).

    Article  CAS  Google Scholar 

  2. Hagiwara, S. & Naka, K.-I. J. gen. Physiol. 48, 141–162 (1964).

    Article  CAS  Google Scholar 

  3. Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. J. Physiol., Lond. 218, 709–755 (1971).

    Article  CAS  Google Scholar 

  4. Llinás, R., Blinks, J. R. & Nicholson, C. Science 176, 1127–1129 (1972).

    Article  ADS  Google Scholar 

  5. Geduldig, D. & Gruener, R. J. Physiol., Lond. 211, 217–244 (1970).

    Article  CAS  Google Scholar 

  6. Kostyuk, P. G., Krishtal, O. A. & Pidoplichko, V. I. Nature 267, 70–72 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Standen, N. B. J. Physiol., Lond. 249, 253–268 (1975).

    Article  CAS  Google Scholar 

  8. Eckert, R. & Lux, H. D. J. Physiol., Lond. 254, 129–151 (1976).

    Article  CAS  Google Scholar 

  9. Lee, K. S., Akaike, N. & Brown, A. M. Nature 265, 751–753 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Lee, K. S., Akaike, N. & Brown, A. M. J. gen. Physiol. 71, 489–508 (1978).

    Article  CAS  Google Scholar 

  11. Conti, F., DeFelice, L. J. & Wanke, E. J. Physiol., Lond. 248, 45–82 (1975).

    Article  CAS  Google Scholar 

  12. Conti, F., Hille, B., Neumcke, B., Nonner, W. & Stämpfli, R. J. Physiol., Lond. 262, 699–727 (1976).

    Article  CAS  Google Scholar 

  13. Fishman, H. M., Moore, L. E. & Poussart, D. J. M. Ann. N. Y. Acad. Sci. 303, 399–423 (1977).

    CAS  PubMed  Google Scholar 

  14. Begenisich, T. & Stevens, C. F. Biophys. J. 15, 843–846 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Katz, B. & Miledi, R. J. Physiol., Lond. 230, 707–717 (1973).

    Article  CAS  Google Scholar 

  16. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–692 (1973).

    Article  CAS  Google Scholar 

  17. Marty, A., Neild, T. & Ascher, P. Nature 261, 501–504 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Hille, B. Prog. Biophys. molec. Biol. 21, 1–32 (1970).

    Article  CAS  Google Scholar 

  19. Armstrong, C. Biophys. J. 15, 932–933 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Neher, E. & Stevens, C. F. A. Rev. Biophys. Bioengng 6, 345–382 (1977).

    Article  CAS  Google Scholar 

  21. Neher, E. & Sakmann, B. Nature 260, 779–802 (1976).

    Article  Google Scholar 

  22. Fishman, H. M., Poussart, D. J. M. & Moore, L. E. J. Membrane Biol. 24, 281–304 (1975).

    Article  CAS  Google Scholar 

  23. Benington, P. R. Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  24. Akaike, N., Lee, K. S. & Brown, A. M. J. gen. Physiol. 71, 509–532 (1978).

    Article  CAS  Google Scholar 

  25. Neher, E. J. gen. Physiol. 58, 36–53 (1971).

    Article  CAS  Google Scholar 

  26. Connors, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 31–53 (1971).

    Article  Google Scholar 

  27. Kostyuk, P. G., Krishtal, O. A. & Shakhovalov, Y. A. J. Physiol., Lond. 270, 545–568 (1977).

    Article  CAS  Google Scholar 

  28. Llinás, R. in Society for Neuroscience Symposia 2, (eds Cowan, M. & Ferendelli, J.) 139–160 (1977).

    Google Scholar 

  29. Armstrong, C. M. J. gen. Physiol. 50, 491–503 (1966).

    Article  CAS  Google Scholar 

  30. Keynes, R. D., Ritchie, J. M. & Rojas, E. J. Physiol., Lond. 213, 235–254 (1971).

    Article  CAS  Google Scholar 

  31. Hagiwara, S. in Membranes 3, (ed. Eisenman, G.) 359–381 (Marcel Dekker, New York, 1975).

    Google Scholar 

  32. Szabo, G. Ann. N. Y. Acad. Sci. 303, 266–280 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AKAIKE, N., FISHMAN, H., LEE, K. et al. The units of calcium conduction in Helix neurones. Nature 274, 379–382 (1978). https://doi.org/10.1038/274379a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274379a0

  • Springer Nature Limited

This article is cited by

Navigation