Skip to main content
Log in

Polarity of actin at the leading edge of cultured cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VERTEBRATE non-muscle cells are known to contain considerable amounts of actin and myosin1–3, but the mechanisms underlying their motility have yet to be elucidated. Various theories have been proposed1,4–7 to explain the well known phenomena of cell migration, membrane ruffling and unidirectional growth processes, different emphasis being placed on the involvement of membrane components and contractile filament assemblies. These hypotheses have been limited, however, by the lack of information about the detailed structural organisation of the motile regions of the cytoplasm. As one approach to this problem we have developed procedures for the direct observation of the filamentous components of the lamella regions of cultured cells in the electron microscope8,9. The method, similar to that adopted by Brown et al.10, consists of the negative-staining of cells grown directly on electron microscope grids after removal of the cell membranes with Triton X-100. By this means, we demonstrate here a single polarity of actin at the leading edge of cultured cells, and consider its implications with regard to cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley, H. E. Nature 243, 445–449 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Pollard, T. D. & Weihing, R. R. CRC Crit. Rev. Biochem. 2, 1–65 (1974).

    Article  CAS  Google Scholar 

  3. Tilney, L. G. in Molecules and Cell Movement (eds Inoué, S. & Stephens, R. E.) 339–388 (Raven New York, 1975).

    Google Scholar 

  4. Bray, D. Nature 244, 93–94 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Harris, A. K. Ciba Fdn Symp. 14, 3–26 (1973).

    CAS  Google Scholar 

  6. Abercrombie, M., Heaysman, J. E. M. & Pegrum, S. M. Expl Cell Res. 62, 389–398 (1970).

    Article  CAS  Google Scholar 

  7. Wessels, N. K. Ciba Fdn Symp. 14, 52–73 (1973).

    Google Scholar 

  8. Small, J. V. & Celis, J. E. Cytobiologie 16, 308–325 (1978).

    CAS  PubMed  Google Scholar 

  9. Isenberg, G. & Small, J. V. Cytobiologie 16, 326–344 (1978).

    Google Scholar 

  10. Brown, S., Levison, W. & Spudich, J. A. J. Supramolec. Struct. 5, 119–130 (1976).

    Article  CAS  Google Scholar 

  11. Albrecht-Buehler, G. & Goldman, R. D. Expl Cell Res. 97, 329–339 (1976).

    Article  CAS  Google Scholar 

  12. Small, J. V. J. Cell Sci. 24, 327–349 (1977).

    CAS  PubMed  Google Scholar 

  13. Mooseker, M. S. & Tilney, L. G. J. Cell Biol. 67, 725–743 (1975).

    Article  CAS  Google Scholar 

  14. Burgess, D. R. & Schroeder, T. E. J. Cell Biol. 74, 1032–1037 (1977).

    Article  CAS  Google Scholar 

  15. Edds, K. T. Expl Cell Res. 108, 452–456 (1977).

    Article  CAS  Google Scholar 

  16. Bretscher, M. S. Nature 260, 21–23 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Woodrum, D. T., Rich, S. A. & Pollard, T. D. J. Cell Biol. 67, 231–237 (1975).

    Article  CAS  Google Scholar 

  18. Hayashi, T. & Wallace, I. P. J. Mechanochem. Cell Motility 3, 163–169 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SMALL, J., ISENBERG, G. & CELIS, J. Polarity of actin at the leading edge of cultured cells. Nature 272, 638–639 (1978). https://doi.org/10.1038/272638a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272638a0

  • Springer Nature Limited

This article is cited by

Navigation