Skip to main content
Log in

Biological nitrogen fixation by way of an enzyme-bound dinitrogen-hydride intermediate

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE molybdenum-containing enzyme nitrogenase1 catalyses the ATP-dependent six-electron reduction of dinitrogen (N2) to NH3. Previous attempts to detect partially reduced nitrogen intermediates, both enzyme-bound and free in solution, have failed2,3. We report here the first detection of an enzyme-bound dinitrogen intermediate, which is only present when the enzyme is reducing N2 and which on both acid and alkali hydrolysis yields hydrazine (N2H4). This dinitrogen intermediate need not be N2H4, because the chemistry of Mo and W dinitrogen complexes (see below) suggests that other enzyme-bound dinitrogen-hydride intermediate species could undergo non-enzymatic hydrolysis on acid and alkali quenching of the enzyme reaction to give N2H4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eady, R. R. & Postgate, J. R. Nature 249, 805–810 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Garcia-Rivera, J. & Burris, R. H. Archs Biochem. Biophys. 119, 167–172 (1967).

    Article  CAS  Google Scholar 

  3. Burris, R. H., Winter, H. C., Munson, T. O. & Garcia-Rivera, J. in Non-Heme Iron Proteins (ed. San Pietro, A.) 315–321 (Antioch, Yellow Springs, 1965).

    Google Scholar 

  4. Eady, R. R., Smith, B. E., Cook, K. A. & Postgate, J. R. Biochem. J. 128, 655–675 (1972).

    Article  CAS  Google Scholar 

  5. Smith, B. E., Thorneley, R. N. F., Yates, M. G., Eady, R. R. & Postgate, J. R. Proc. first int. Symp. Nitrogen Fixation 1, 150–176 (eds Newton, W. E. & Nyman, C. J.) (Washington State Univ. Press 1976).

    Google Scholar 

  6. Thorneley, R. N. F. & Cornish-Bowden, A. Biochem. J. 165, 255–262 (1977).

    Article  CAS  Google Scholar 

  7. Bulen, W. A. Proc. first int. Symp. Nitrogen Fixation 1, (eds Newton, W. E. & Nyman, C. J.) 177–186 (Washington State Univ. Press, 1976).

    Google Scholar 

  8. Hwang, J. C., Chen, C. H. & Burris, R. H. Biochim. biophys. Acta 283, 339–350 (1973).

    Article  Google Scholar 

  9. Chatt, J., Pearman, A. J. & Richards, R. L. J. organomet. Chem. 101, C45–C47 (1975).

    Article  CAS  Google Scholar 

  10. Chatt, J., Pearman, A. J. & Richards, R. L. Nature 253, 39–40 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Chatt, J., Pearman, A. J. & Richards, R. L. J. chem. Soc. (Dalton) 1852–1860 (1977).

  12. Smith, B. E. (for review) J. Less Common Metals 54, 564–475 (1977).

  13. Chatt, J. in Biological Aspects of Inorganic Chemistry (eds Addison, A. W., Cullen, W. R., Dolphin, D. & James, B. R.) 229–243 (Wiley, New York and London, 1976).

    Google Scholar 

  14. Chatt, J. Proc. R. Soc. B 172, 327–337 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Chaykin, S. Anatyt. Biochem. 31, 375–382 (1969).

    Article  CAS  Google Scholar 

  16. Watt, G. W. & Chrisp, J. D. Analyt. Chem. 24, 2006–2008 (1952).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THORNELEY, R., EADY, R. & LOWE, D. Biological nitrogen fixation by way of an enzyme-bound dinitrogen-hydride intermediate. Nature 272, 557–558 (1978). https://doi.org/10.1038/272557a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272557a0

  • Springer Nature Limited

This article is cited by

Navigation