Skip to main content
Log in

Control of interaction of spectrin and actin by phosphorylation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SPECTRIN is a high molecular weight protein located on the cytoplasmic surface of the mammalian erythrocyte membrane, from which it may be readily liberated by extraction with solutions of low ionic strength. It is thought to be a major structural element of the cell and to play a critical part in maintaining its discoid shape and characteristic viscoelastic properties. Birchmeier and Singer1 have shown that changes in the shape of red cell ghosts are associated with the phosphorylation of a single serine residue on one of the two spectrin subunits, and have suggested that this might provide a basis for the well-known control of red cell shape by ATP2. The erythrocyte membrane also contains actin, which is present in approximately equimolar proportions to the spectrin dimer (molecular weight 500,000 (ref. 3)). We have shown previously4 that there is a specific interaction between these two proteins, which reveals itself in the ability of spectrin to provoke the polymerisation of muscle actin in vitro. We show here that this effect depends on the phosphorylation of spectrin. Furthermore, in an undis-persed mixture of spectrin and its cognate actin such phosphorylation causes the formation of a gel. The striking parallel between these results and the previously demonstrated effects of phosphorylation in situ suggests that the shape of the cell is controlled primarily by the actin–spectrin complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birchmeier, W. & Singer, S. J. J. Cell Biol. 73, 647–659 (1977).

    Article  CAS  Google Scholar 

  2. Makato, N., Nakao, T., Yamazoe, S. Nature 187, 945–946 (1960).

    Article  ADS  Google Scholar 

  3. Gratzer, W. B. & Beaven, G. H. Eur. J. Biochem. 58, 403–409 (1975).

    Article  CAS  Google Scholar 

  4. Pinder, J. C., Bray, D. & Gratzer, W. B. Nature 258, 765–766 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Rubin, C. S., Erlichman, J. & Rosen, O. M. J. biol. Chem. 247, 6135–6139 (1972).

    CAS  PubMed  Google Scholar 

  6. Avruch, J. & Fairbanks, G. Biochemistry 13, 5507–5514 (1974).

    Article  CAS  Google Scholar 

  7. Hosey, M. M. & Tao, M. Biochim. biophys. Acta 482, 348–357 (1977).

    Article  CAS  Google Scholar 

  8. Dodge, J. T., Mitchell, C. & Hanahan, D. J. Archs Biochem. 100, 119–130 (1963).

    Article  CAS  Google Scholar 

  9. Pinder, J. C., Tidmarsh, S. & Gratzer, W. B. Archs Biochem. 172, 654–660 (1976).

    Article  CAS  Google Scholar 

  10. Yu, J., Fischman, D. A. & Steck, T. L. J. supramol. Struct. 1, 233–248 (1973).

    Article  CAS  Google Scholar 

  11. Lazarides, E. & Lindberg, U. Proc. natn. Acad. Sci. U.S.A. 71, 4742–4746 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Hitchcock, S. E., Carlsson, L. & Lindberg, U. Cell 7, 531–542 (1976).

    Article  CAS  Google Scholar 

  13. Garrels, J. I. & Gibson, W. Cell 9, 793–805 (1976).

    Article  CAS  Google Scholar 

  14. Hiller, G. & Weber, K. Nature 266, 181–183 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Hitchcock, S. E. J. Cell Biol. 74, 1–15 (1977).

    Article  CAS  Google Scholar 

  16. Jaenicke, L. Analyt. Biochem. 61, 623–627 (1974).

    Article  CAS  Google Scholar 

  17. Marchesi, V. T. Meth. Enzym. 32, 275–277 (1974).

    Article  CAS  Google Scholar 

  18. Spudich, J. A. & Watt, S. J. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PINDER, J., BRAY, D. & GRATZER, W. Control of interaction of spectrin and actin by phosphorylation. Nature 270, 752–754 (1977). https://doi.org/10.1038/270752a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270752a0

  • Springer Nature Limited

This article is cited by

Navigation