Skip to main content
Log in

Calcium requirement for axoplasmic transport in mammalian nerve

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TO account for fast axoplasmic transport, the movement of materials in nerve fibres, a model has been advanced in analogy to the sliding filament mechanism of muscle contraction1. We have shown in in vitro studies that transport is closely dependent on oxidative metabolism and a continual supply of ATP which could be hydrolysed by the Mg2+–Ca2+ ATPase present in nerve2. One might, therefore, expect a dependence of transport on either Ca2+ or Mg2+. But, in previous studies of axoplasmic transport in vitro, we and others found transport to continue as usual when nerves were placed in incubation media free of divalent cations3–5. Some support for the involvement of Ca2+ in transport was provided by the fact that a block of transport was found with 50 mM oxalate, presumably by a binding of intracellular Ca2+ (ref. 1) and the block of organelle movement observed in single fibres exposed to 10 mM EDTA6. We report here that clear evidence for a participation of Ca2+ in axoplasmic transport was revealed when a desheathed nerve preparation was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ochs, S. Science 176, 252–260 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Khan, M. A. & Ochs, S. Brain Res. 81, 413–426 (1974).

    Article  CAS  Google Scholar 

  3. Banks, P., Mayor, D. & Mraz, P. J. Physiol., Lond. 229, 383–394 (1973).

    Article  CAS  Google Scholar 

  4. Ochs, S. & Smith, C. J. Neurobiol. 6, 85–102 (1975).

    Article  CAS  Google Scholar 

  5. Hammerschlag, R., Dravid, A. R. & Chiu, A. Y. Science 188, 273–275 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Kirkpatrick, J. B. & Rose, R. E. Trans. Soc. Neurosci. 2, 255 (1972).

    Google Scholar 

  7. Crescitelli, F. Am. J. Physiol. 166, 229–240 (1951).

    Article  CAS  Google Scholar 

  8. Krujević, K. J. Physiol., Lond. 128, 473–488 (1955).

    Article  Google Scholar 

  9. Ochs, S., Sabri, M. I. & Johnson, J. Science 163, 686–687 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Ochs, S. J. Physiol., Lond. 227, 627–645 (1972).

    Article  CAS  Google Scholar 

  11. Baker, P. F. Prog. Biophys. molec. Biol. 24, 177–223 (1972).

    Article  CAS  Google Scholar 

  12. Blaustein, M. P. Rev. Physiol. Biochem. Pharm. 70, 33–82 (1974).

    Article  CAS  Google Scholar 

  13. Brinley, F. Jr, Spangler, S. G. & Mullins, L. J. J. gen. Physiol. 66, 223–250 (1975).

    Article  CAS  Google Scholar 

  14. Baker, P. F. Fedn Proc. 35, 2589–2595 (1976).

    CAS  Google Scholar 

  15. DiPolo, R. Fedn Proc. 35, 2579–2582 (1976).

    CAS  Google Scholar 

  16. Lehninger, A. L. Biochemistry, 2nd edn (Worth, New York, 1975).

    Google Scholar 

  17. Carafoli, E. & Crompton, M. Symp. Soc. exp. Biol. 30, 89–115 (1976).

    CAS  Google Scholar 

  18. Stockel, M. E., Hindelang-Gertner, C., Dellman, H. D., Porte, A. & Stutinsky, F. Cell Tiss. Res. 157, 307–322 (1975).

    Google Scholar 

  19. Iqbal, Z. & Ochs, S. Soc. Neurosci. Abst. 2, 47 (1976).

    Google Scholar 

  20. Ochs, S. Fedn Proc. 33, 1049–1058 (1974).

    CAS  Google Scholar 

  21. Weisenberg, R. C. Science 177, 1104–1105 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Shelanski, M. L., Gaskin, F. & Cantor, C. R. Proc. natn. Acad. Sci. U.S.A. 70, 765–768 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OCHS, S., WORTH, R. & CHAN, SY. Calcium requirement for axoplasmic transport in mammalian nerve. Nature 270, 748–750 (1977). https://doi.org/10.1038/270748a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270748a0

  • Springer Nature Limited

This article is cited by

Navigation