Skip to main content
Log in

Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE purple membrane of Halobacterium halobium acts as a light-driven proton pump, producing a transmembrane proton gradient which is coupled to ATP synthesis1, and to phototaxis2 in the intact bacteria. It contains a single type of protein, bacteriorhodopsin (BR) which spans a 45-Å membrane. The isolated purple membranes are flat oval sheets with an average diameter of 0.5 µm (refs 3, 4). Bacteriorhodopsin contains a retinal molecule (all-trans and 13-cis)5 which is covalently bound via a protonated Schiff base to a lysine residue. It undergoes a photocycle described by the following scheme6–8: where proton ejection to the bulk solution occurs on the route ‘550’ → ‘412’ (refs 9,10), whereas protonation of the bacteriorhodopsin takes place parallel to the , process11. It has been reported that the reconstituted undergoes a cycle which involves the ‘X’ and the ‘610’ intermediates12. It was demonstrated that proton transfer is a vectorial process where the proton is ejected from one side of the purple membrane and reprotonation takes place on the other side13. We present here results on the effects of the specific hydration of the purple membrane on the relaxation times of ‘412’ and on the formation of the ‘660’ and ‘610’ intermediates. The results demonstrate that the full photocycle of bacteriorhodopsin can be observed in thin purple membrane layers even at the lowest hydration state and that the amount of absorbed water is rate limiting for the molecular process of the cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oesterhelt, D. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Hildebrand, E. & Dencher, N. Nature 257, 46–48 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Oesterhelt, D. & Stoeckenius, W. Nature new Biol. 233, 152–155 (1971).

    Article  Google Scholar 

  4. Henderson, R. & Unwin, P. N. T. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Oesterhelt, D., Muntzen, M. & Schumann, L. Eur. J. Biochem. 40, 453–463 (1973).

    Article  CAS  Google Scholar 

  6. Kung, M. C., Devault, D., Hess, B. & Oesterhelt, D. Biophys. J. 15, 907–911 (1975).

    Article  CAS  Google Scholar 

  7. Lozier, H., Bogomolni, R. A. & Stoeckenius, W. Biophys. J. 15, 955–962 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Goldschmidt, C. R., Ottolenghi, M. & Korenstein, R. Biophys. J. 16, 839–843 (1976).

    Article  CAS  Google Scholar 

  9. Chance, B., Porte, M., Hess, B. & Oesterhelt, D. Biophys. J. 15, 907–911 (1975).

    Article  ADS  Google Scholar 

  10. Korenstein, R., Sherman, W. V. & Caplan, S. R. Biophys. Struct. Mechanism 2, 267–276 (1976).

    Article  CAS  Google Scholar 

  11. Oesterhelt, D. & Hess, B. Eur. J. Biochem. 37, 316–326 (1973).

    Article  CAS  Google Scholar 

  12. Sperling, W., Carl, P., Rafferty, C. N. & Dencher, N. A. Biophys. Struct. Mechanism. 3, 79–94 (1977).

    Article  CAS  Google Scholar 

  13. Racker, E. & Stoeckenius, E. J. biol. Chem. 249, 662–663 (1974).

    CAS  PubMed  Google Scholar 

  14. Wexler, A. & Hasegawa, S. J. Res. natn. Bur. Stand. 53, 19–26 (1954).

    Article  CAS  Google Scholar 

  15. Meinardus, G., Schwedt, D. Archs. Rat. Mech. 297–326 (1964).

  16. Rice, J. R. J. Soc. Industr. appl. Math. 10, 149–161 (1962).

    Article  Google Scholar 

  17. Hess, B. & Kuschmitz, D. FEBS Lett. 74, 20–24 (1977).

    Article  CAS  Google Scholar 

  18. Sherman, W. V., Korenstein, R. & Caplan, S. R. Biochim. biophys. Acta 430, 454–458 (1976).

    Article  CAS  Google Scholar 

  19. Eisenbach, M., Bakker, P., Korenstein, R. & Caplan, S. R. FEBS Lett. 71, 228–231 (1976).

    Article  CAS  Google Scholar 

  20. Lozier, R. H., Niederberger, W., Bogomolni, R. A., Hwang, S. & Stoeckenius, W. Biochim. biophys. Acta 440, 545–556 (1976).

    Article  CAS  Google Scholar 

  21. Lewin, S. in Displacement of Water and its Control of Biochemical Reactions 99–233 (Academic, London and New York, 1974).

    Google Scholar 

  22. Gutfreund, H. in Enzymes: Physical Principles (Wiley-Interscience, New York, 1972).

    Google Scholar 

  23. Happe, M. & Overath, P. Biochem. biophys. Res. Commun. 72, 1509–1511 (1976).

    Article  Google Scholar 

  24. Korenstein, R. & Hess, B. FEBS Lett. (in the press).

  25. Wald, G., Durell, J. & George, C. C. S. Science 111, 179–181 (1950).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KORENSTEIN, R., HESS, B. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 270, 184–186 (1977). https://doi.org/10.1038/270184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270184a0

  • Springer Nature Limited

This article is cited by

Navigation