Skip to main content
Log in

Dark noise in retinal bipolar cells and stability of rhodopsin in rods

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FOR the dark-adapted human observer, the absolute visual threshold has been estimated to be the effective absorption of 5–10 photons in an area covered by some 500 rods1. Although the quantum statistics of light enter as a factor which determines the frequency of seeing weak light stimuli1,2, it has been suggested that there is ‘noise’ in the visual system which ultimately limits the sensitivity of the eye3,4. Each rod in the human eye contains about 108 rhodopsin molecules, and if the ‘noise’ arises from events in the rod indistinguishable from the effects of light, there must be an extremely low probability of spontaneous change produced in any single rhodopsin molecule (or at sites within the rod disk membrane leading to an elementary voltage change in the rod). We have analysed voltage fluctuations in bipolar cells as a probe of rod activity in the dogfish retina. A component of the noise has been identified as photon noise, superimposed on dark noise arising from photon-like events. This part of the dark noise has a large temperature dependence (Q10 about 8), suggesting thermal isomerisation of rhodopsin. The rate constant, extrapolated to 37 °C, would correspond to one isomerisation in 30 s in a human rod, similar to estimates from the absolute threshold for human vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hecht, S., Shlaer, S. & Pirenne, M. H. J. gen. Physiol. 25, 819–840 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rose, A. J. opt. Soc. Am. 38, 196–208 (1948).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Denton, E. J. & Pirenne, M. H. J. Physiol., Lond. 123, 417–442 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlow, H. B. J. opt. Soc. Am. 46, 634–639 (1956).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ashmore, J. F. & Falk, G. J. Physiol., Lond. 258, 39–40P (1976).

    Article  Google Scholar 

  6. Ashmore, J. F. & Falk, G. Nature, 263, 248–249 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ashmore, J. F. & Falk, G. J. Physiol., Lond. 269, 27–28P (1977).

    Google Scholar 

  8. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. J. Physiol., Lond. 242, 685–727 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Penn, R. D. & Hagins, W. A. Biophys. J. 12, 1073–1094 (1972).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hubbard, R. J. gen. Physiol. 42, 259–280 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hubbard, R. & Kropf, A. Proc. natn. Acad. Sci. U.S.A. 44, 130–139 (1958).

    Article  ADS  CAS  Google Scholar 

  12. Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes (McGraw Hill, New York, 1941).

  13. Hubbard, R. J. biol. Chem. 241, 1814–1818 (1966).

    CAS  PubMed  Google Scholar 

  14. St George, R. C. C. J. gen. Physiol. 35, 495–517 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dartnall, H. J. A. The Visual Pigments (Methuen, London, 1957).

    Book  Google Scholar 

  16. Stiles, W. S. in Transactions of the Optical Convention of the Worshipful Company of Spectacle Makers 97–107 (Spectacle Makers' Company, London, 1948).

    Google Scholar 

  17. Denton, E. J. & Pirenne, M. H. J. Physiol., Lond. 125, 181–207 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Vries, H. Progr. Biophys. biophys. Chem. 6, 207–264 (1955).

    Article  Google Scholar 

  19. Falk, G. & Fatt, P. in Handbook of Sensory Physiology 7 (ed. Dartnall, H. J. A.) 200–244 (Springer, Heidelberg, 1972).

    Google Scholar 

  20. Simon, E. J., Lamb, T. D. & Hodgkin, A. L. Nature, 256, 661–662 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Simon, E. J. & Lamb, T. D. in Vertebrate Photoreception (ed. Barlow, H. B. & Fatt, P.) (Academic, London, in the press).

  22. Schwartz, E. A. in Vertebrate Photoreception (ed. Barlow, H. B. & Fatt, P.) (Academic, London, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ASHMORE, J., FALK, G. Dark noise in retinal bipolar cells and stability of rhodopsin in rods. Nature 270, 69–71 (1977). https://doi.org/10.1038/270069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270069a0

  • Springer Nature Limited

This article is cited by

Navigation