Skip to main content
Log in

Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Low electrical resistance intercellular junctions have been found in a wide variety of adult tissues, both in vivo and in tissue culture1 and in early embryos2. Vertebrate and invertebrate adult intercellular junctions are permeable to small ions and a variety of other molecules, of molecular weights possibly up to 1,000, as shown by the movement of tracers such as fluorescein8 and transfer of nucleotides (‘metabolic cooperation’)3. In adult systems, such intercellular exchange is correlated with the presence of gap junctions4. In embryos, some form of specific junction is necessary to account for the observed electrical coupling after early cleavage stages5 and the presence of gap junctions has been reported5–8. Since the low resistance intercellular pathway has been implicated in the control of spatial and temporal organisation during development9, the permeability of the embryonic junction assumes some importance. There is evidence suggesting that embryonic junctions are less permeable than adult junctions10–13, which we have recently confirmed14. Our experiments14 suggested that there is selectivity in the gap junctional membrane which led us to predict that the junctional permeability would be sensitive to changes in intracellular pH. We present here results which confirm this prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furshpan, E. S. & Potter, D. D. Curr. Top. dev. Biol. 3, 95–127 (1968).

    Article  CAS  Google Scholar 

  2. Powers, R. D. & Tupper, J. T. in Intracellular Communication 231–251 (Plenum, New York, 1977).

    Book  Google Scholar 

  3. Burk, R. R., Pitts, J. D. & Subak-Sharpe, J. H. Expl Cell Res. 53, 297–301 (1968).

    Article  CAS  Google Scholar 

  4. Gilula, N. B., Reeves, O. R. & Steinbach, A. Nature 235, 262–265 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Sheridan, J. D. in Cell Surface Reviews (eds G. Poste & G. L. Nicholson) 1, 409–443 (North Holland, Amsterdam, 1976).

    Google Scholar 

  6. Sanders, E. J. & Di Caprio, R. A. Differentiation 7, 13–21 (1976).

    Article  CAS  Google Scholar 

  7. Sanders, E. J. & Zalik, S. E. Wilhelm Roux' Arch. 171, 181–194 (1972).

    Article  Google Scholar 

  8. Ducibella, T., Albertini, D. F., Anderson, E. & Biggers, J. D. Devl Biol. 45, 231–250 (1975).

    Article  CAS  Google Scholar 

  9. Warner, Anne E. in Simple Nervous System 3–25 (Edward Arnold, London 1975).

    Google Scholar 

  10. Slack, C. & Palmer, J. F. Expl Cell Res. 55, 416–419 (1969).

    Article  CAS  Google Scholar 

  11. Tupper, J. T. & Saunders, J. W. Devl Biol. 27, 546–554 (1972).

    Article  CAS  Google Scholar 

  12. Bennett, M. V. L. in Intracellular Staining in Neurobiology 115–134 (Springer, Berlin, 1973).

    Book  Google Scholar 

  13. Baker, P. F. & Warner, Anne E. J. Cell Biol. 53, 579–581 (1972).

    Article  Google Scholar 

  14. Turin, L. J. Physiol., Lond. 269, 6P–7P (1977).

    CAS  PubMed  Google Scholar 

  15. Thomas, R. C. J. Physiol., Lond. 238, 159–180 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Loewenstein, W. R. Ann. N.Y. Acad. Sci. 137, 441–472 (1966).

    Article  ADS  CAS  Google Scholar 

  17. Meech, R. & Thomas, R. C. J. Physiol., Lond. (in the press).

  18. Rose, B. & Loewenstein, W. R. Nature 245, 250–252 (1975).

    Article  ADS  Google Scholar 

  19. Brachet, J. Chemical Embryology (Interscience, London, 1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TURIN, L., WARNER, A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270, 56–57 (1977). https://doi.org/10.1038/270056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270056a0

  • Springer Nature Limited

This article is cited by

Navigation