Skip to main content
Log in

Water binding by antifreeze glycoproteins from Antarctic fish

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Low molecular weight glycoproteins isolated from serum of Antarctic fish have been shown1 to be responsible for freezing point depression which permits survival at temperatures down to −1.9 °C. The principal active antifreeze glycoprotein (AFGP) of several Antarctic species consists of a repeating tripeptide Ala-Thr-Ala with a disaccharide galactosyl-N-acetylgalactosamine linked to the threonine residue2–4. The AFGP is more effective in freezing-point depression on a weight basis than NaCl and several hundredfold more effective than ordinary proteins2. Melting point, however, is virtually unaffected by the AFGP5. We have investigated the possible role of proteinbound water in the unusual antifreeze activity of the AFGP. Ordinary proteins such as bovine serum albumin, haemoglobin, and lysozyme show hydration levels of about 0.4 g H2O per g protein6. This water does not freeze at temperatures down to −35 °C, but is sufficiently mobile to produce a measurable proton magnetic resonance signal. Quantitative determination of the amount of this ‘bound’ water is therefore possible in frozen protein solutions7. We have used this technique to examine water binding by the AFGP over a range of temperatures below the freezing point of bulk water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVries, A. L. & Wohlschlag, D. E. Science 163, 1073–1075 (1969).

    Article  ADS  CAS  Google Scholar 

  2. DeVries, A. L., Komatsu, S. K. & Feeney, R. E. J. biol. Chem. 245, 2901–2908 (1970).

    CAS  PubMed  Google Scholar 

  3. DeVries, A. L., Komatsu, S. K. & Feeney, R. E. J. biol. Chem. 245, 2909–2913 (1970).

    PubMed  Google Scholar 

  4. DeVries, A. L., Vandenheede, J. & Feeney, R. E. J. biol. Chem. 246, 305–308 (1971).

    CAS  PubMed  Google Scholar 

  5. DeVries, A. L. Science 172, 1152–1155 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Kuntz, I. D. & Kauzmann, W. Adv. Protein Chem. 28, 239–345 (1974).

    Article  CAS  Google Scholar 

  7. Kuntz, I. D., Brassfield, T. S., Law, G. D. & Purcell, G. V. Science 163, 1329–1331 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Kuntz, I. D. & Brassfield, T. S. Archs Biochem. Biophys. 142, 660–664 (1971).

    Article  CAS  Google Scholar 

  9. Cooke, R. & Kuntz, I. D. Ann. Rev. Biophys. Bioengng 3, 95–126 (1974).

    Article  CAS  Google Scholar 

  10. Pennock, B. E. & Schwan, H. P., J. phys. Chem. 73, 2600–2600 (1969).

    Article  CAS  Google Scholar 

  11. Derbyshire, W. & Duff, I. D. Faraday Disc. 57, 243–254 (1976).

    Article  Google Scholar 

  12. Lynch, L. J. & Webster, D. S. J. Polymer Sci. Symp. No. 49, 43–63 (1975).

  13. Kuntz, I. D. J. Am. chem. Soc. 93, 514–516 (1971).

    Article  CAS  Google Scholar 

  14. Lin, Y., Duman, J. G. & DeVries, A. L. Biochem. biophys. Res. Commun. 46, 87–92 (1972).

    Article  CAS  Google Scholar 

  15. Duman, J. G. & DeVries, A. L. Cryobiology 9, 469–472 (1972).

    Article  CAS  Google Scholar 

  16. Lin, Y., Raymond, J. A., Duman, J. G. & DeVries, A. L. Cryobiology 13, 334–340 (1976).

    Article  CAS  Google Scholar 

  17. DeVries, A., in Biochemical and Biophysical Perspectives in Marine Biology (eds Malins, D. C. & Sargent, J. R.) 289–330 (Academic, London, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HASCHEMEYER, A., GUSCHLBAUER, W. & DEVRIES, A. Water binding by antifreeze glycoproteins from Antarctic fish. Nature 269, 87–88 (1977). https://doi.org/10.1038/269087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269087a0

  • Springer Nature Limited

This article is cited by

Navigation