Skip to main content
Log in

Guanosine tetra- and pentaphosphate synthesis by bacterial stringent factor and eukaryotic ribosomes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AMINO acid starvation of rel+ bacteria1 results in a rapid pleiotropic response involving the cessation of stable RNA synthesis, a decrease in the rate of nucleoside transport, an altered pattern of mRNA synthesis, inhibition of phospholipid synthesis and increased protein turnover. This stringent response2 is rapidly reversed when the amino acid starvation is relieved and is apparently mediated by two unusual nucleotides, guanosine 5′-diphosphate, 3′-diphosphate (ppGpp) and guanosine 5′-triphosphate, 3′-diphosphate (pppGpp)3. These nucleotides are synthesised on the ribosome in the presence of uncharged tRNA, ATP, GTP and an enzyme known as stringent factor3. Mutants which fail to exhibit the stringent response to amino acid starvation with the synthesis of ppGpp pppGpp are known as relaxed mutants4 and in Escherichia coli are mapped at three loci; relA (ref. 5), relB (ref. 6), and rplK (relC) (refs 7 and 8). The synthesis of ppGpp and pppGpp has also been observed in various prokaryotes including blue-green algae9. Here we demonstrate the ability of bacterial stringent factor to be stimulated by eukaryotic ribosomal preparations to synthesise both ppGpp and pppGpp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cashel, M. & Gallant, J. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 733–745 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  2. Stent, G. S. & Brenner, S. Proc. natn. Acad. Sci. U.S.A. 47, 2005–2014 (1961).

    Article  CAS  Google Scholar 

  3. Block, R. & Haseltine, W. A. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel P.) 747–761 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  4. Borek, E., Ryan, A. & Rockenbach, J. J. Bact. 69, 460–467 (1955).

    CAS  PubMed  Google Scholar 

  5. Alfoldi, L., Stent, G. S. & Clowes, R. C. J. molec. Biol. 5, 348–355 (1962).

    Article  CAS  Google Scholar 

  6. Lavallé, R. Bull. Soc. Chim. Biol. 47, 1567–1570 (1965).

    PubMed  Google Scholar 

  7. Friesen, J. D., Fiil, N. P., Parker, J. M. & Haseltine, W. A. Proc. natn. Acad. Sci. U.S.A. 71, 3465–3469 (1974).

    Article  CAS  Google Scholar 

  8. Parker, J. M., Watson, R. J. & Friesen, J. D. Molec. gen. Genet. 101, 227–244 (1976).

    Google Scholar 

  9. Carr, N. G. & Mann, N. Biochem. Soc. Trans. 3, 368–373 (1976).

    Article  Google Scholar 

  10. Hershko, A., Mamont, P., Shields, R. & Tomkins, G. M. Nature 232, 206–211 (1971).

    CAS  Google Scholar 

  11. Mamont, P. et al. Biochem. biophys. Res. Commun. 43, 1378–1384 (1972).

    Article  Google Scholar 

  12. Richter, D. FEBS Lett. 34, 291–294 (1973).

    Article  CAS  Google Scholar 

  13. Stanners, C. P. & Thompson, L. H. in Control of Proliferation in Animal Cells (eds Clarkson, B. & Baserga, R.) 191–203 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  14. Klein, C. FEBS Lett. 38, 149–152 (1974).

    Article  CAS  Google Scholar 

  15. Rhaese, H. J. FEBS Lett. 53, 113–118 (1975).

    Article  CAS  Google Scholar 

  16. Horváth, I., Zabos, P., Szabados, GY. & Bauer, P. FEBS Lett. 56, 179–183 (1975).

    Article  Google Scholar 

  17. Irr, J. D., Kaulenas, M. S., Unsworth, B. R. Cell 3, 249–253 (1974).

    Article  CAS  Google Scholar 

  18. Haseltine, W. A. & Block, R. Proc. natn. Acad. Sci. U.S.A. 70, 1564–1568 (1973).

    Article  CAS  Google Scholar 

  19. Pedersen, F. S. in Alfred Benzon Symp. IX, Control of Ribosome Synthesis (eds Kjeldgaard, N. O. & Maaløe, O.) 419–426 (Munlsogaard, 1976).

    Google Scholar 

  20. Thompson, L. H., Harkins, J. L. & Stanners, C. P. Proc. natn. Acad. Sci. U.S.A. 70, 3094–3098 (1973).

    Article  CAS  Google Scholar 

  21. Sy, V., Ogawa, Y. & Lipmann, F. Proc. natn. Acad. Sci. U.S.A. 70, 2145–2148 (1973).

    Article  CAS  Google Scholar 

  22. Christiansen, L. & Nierhaus, K. H. Proc. natn. Acad. Sci. U.S.A. 73, 1839–1843 (1976).

    Article  CAS  Google Scholar 

  23. Howard, G. A., Smith, R. L. & Gordon, J. J. molec. Biol. 106, 623–637 (1976).

    Article  CAS  Google Scholar 

  24. Beres, L. & Lucas-Lenard, J. Biochim. biophys. Acta 395, 80–90 (1975).

    Article  CAS  Google Scholar 

  25. Buckel, P. & Böck, A. Biochim. Biophys. Acta 324, 184–187 (1973).

    Article  CAS  Google Scholar 

  26. Kudrna, R. & Edlin, G. J. Bact. 121, 740–742 (1975).

    CAS  PubMed  Google Scholar 

  27. McMahon, D. & Langstroth, P. J. gen. Microbiol. 73, 239–250 (1972).

    Article  CAS  Google Scholar 

  28. Thammana, P., Buerk, R. R. & Gordon, J. FEBS Lett. 68, 187–190 (1976).

    Article  CAS  Google Scholar 

  29. Stanners, C. P. & Becker, H. J. cell. Physiol. 77, 31–42 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

POLLARD, J., PARKER, J. Guanosine tetra- and pentaphosphate synthesis by bacterial stringent factor and eukaryotic ribosomes. Nature 267, 371–373 (1977). https://doi.org/10.1038/267371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267371a0

  • Springer Nature Limited

This article is cited by

Navigation