Skip to main content
Log in

Long term β-adrenergic blockade reduces tyrosine hydroxylase and dopamine β-hydroxylase activities in sympathetic ganglia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

β-ADRENOCEPTOR antagonists are now well established in the treatment of hypertension but the mechanism by which they reduce blood pressure is not understood1. There is clearly more involved than an immediate blockade of the cardiovascular β-adrenergic receptors, since intravenous (i.v.) infusion of propranolol in man reduces cardiac output but has no effect on arterial blood pressure2,3. The full hypotensive effect of β-adrenergic blockers is delayed4, and is associated with a reduction in peripheral resistance2,3. The hypotensive action of these drugs is nevertheless predominantly related to their common property of β-adrenergic receptor blockade, as they all produce similar falls in blood pressure5 despite their differing ancillary properties6 and effects on plasma renin activity7. It has been suggested that the hypotensive effect of propranolol is due to a central inhibition of sympathetic activity, since i.v. propranolol reduces preganglionic sympathetic nerve activity in rabbits8. But practolol, an effective antihypertensive which penetrates the central nervous system poorly9, has no such acute effect10. The possibility has yet to be considered that the hypotensive action common to all β-adrenoceptor antagonists is directly related to a slowly developing reduction in sympathetic activity and hence in peripheral resistance. Long term increases or decreases in the activity of sympathetic neurons are specifically reflected by changes in the concentration of the noradrenaline-synthesising enzymes tyrosine hydroxylase and dopamine β-hydroxylase contained in the cells11. We report here that prolonged treatment with β-adrenoceptor antagonists causes a slow-onset reduction in the concentration of these enzymes in the superior cervical ganglia of rabbits. This decrease in sympathetic activity may in part explain the hypotensive effect of long-term β-blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzgerald, J. D. Postgrad, med. J. 52, Suppl. 4, 184–190 (1976).

    Google Scholar 

  2. Tarazi, R. C. & Dustan, H. P. Am. J. Cardiol. 29, 633–640 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Hansson, L., Zweifler, A. J., Julius, S. & Hunyor, S. N. Acta med. Scand. 196, 27–34 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Prichard, B. N.C. & Gillam, P. M. S. Br. med. J. 1, 7–16 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davidson, C., Thadani, U., Singleton, W. & Taylor, S. H. Br. med. J. 2, 7–9 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shanks, R. G. Postgrad. med. J. 52, Suppl. 4, 14–20 (1976).

    Article  PubMed  Google Scholar 

  7. Morgan, T. O., Roberts, R., Carney, S. C., Louis, W. J. & Doyle, A. E. Br. J. clin. Pharmac. 2, 159–164 (1975).

    Article  CAS  Google Scholar 

  8. Lewis, P. J. & Haeusler, G. Nature 256, 440 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Scales, B. & Cosgrove, M. B. J. Pharmac. exp. Ther. 175, 338–347 (1970).

    CAS  Google Scholar 

  10. Lewis, P. J. Am. J. Med. 60, 837–852 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Thoenen, H. Biochem. Soc. Symp. 36, 3–15 (1972).

    CAS  Google Scholar 

  12. Vaughan Williams, E. M., Raine, A. E. G., Cabrera, A. A. & Whyte, J. M. Cardiovasc. Res. 9, 579–592 (1975).

    Article  Google Scholar 

  13. Levitt, M., Gibb, J. W., Daly, J. W., Lipton, M. & Udenfriend, S. Biochem. Pharmac. 16, 1313–1321 (1967).

    Article  CAS  Google Scholar 

  14. Molinoff, P. B., Weinshilboum, R. & Axelrod, J. J. Pharmac. exp. Ther. 178, 425–431 (1971).

    CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  16. Otten, U., Mueller, R. A., Oesch, F. & Thoenen, H. Proc. natn. Acad. Sci. U.S.A. 71, 2217–2221 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Myers, M. G., Lewis, P. J., Reid, J. L. & Dollery, C. T. J. Pharmac. exp. Ther. 192, 327–335 (1975).

    CAS  Google Scholar 

  18. Otten, U., Paravicini, U., Oesch, F. & Thoenen, H. Naunyn-Schmiedeberg's Arch. Pharmac. 280, 117–127 (1973).

    Article  CAS  Google Scholar 

  19. Adler-Graschinsky, E. & Langer, S. Z. Br. J. Pharmac. 16, 43–50 (1975).

    Article  Google Scholar 

  20. Fonnum, F. J. Neurochem. 24, 407–409 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Levitt, H., Spector, S., Sjoerdsma, A. & Udenfriend, S. J. Pharmac. exp. Ther. 148, 1–8 (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAINE, A., CHUBB, I. Long term β-adrenergic blockade reduces tyrosine hydroxylase and dopamine β-hydroxylase activities in sympathetic ganglia. Nature 267, 265–267 (1977). https://doi.org/10.1038/267265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267265a0

  • Springer Nature Limited

This article is cited by

Navigation