Skip to main content
Log in

Models for the bacterial iron-transport chelate enterochelin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MICROBIAL iron-transport compounds, or siderochromes are of two general structural types, the phenolates and the hydroxa-mates1,2. X-ray studies of several of the latter, for example, ferrichrome A (ref. 3), ferrioxamine E (ref. 4) and myco-bactin P (ref. 5), establish the anion of hydroxamic acid (−N(O)CO−) as the dominant metal-binding moiety, with discrete, neutral [FeO6] (refs 3 and 4) or [FeO5N] (ref. 5) units being involved. No similar structural data are at present available, however, for any member of the phenolate class and there is some ambiguity about the metal-binding sites. This is demonstrated for the most widely studied member of the group, enterochelin (or enterobactin), in Fig. 1. Both modes of attachment have parallels in the well known colour reactions of iron(III) with phenols, polyphenols and catechols and in the strong coordination of deprotonated amide nitrogen in simple peptide complexes of the transition elements7. Furthermore, molecular models (Drieding or CPK) of iron (III) enterochelin can readily be constructed with either bonding combination. Here we report our studies of two catechol (1,2-dihydroxy-benzene) complexes containing the coordination type given by Fig. 1a and compare some of their properties with those of iron(III)-enterochelin (part of this work was presented in ref. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neilands, J. B., in Inorganic Biochemistry, 1 (edit. by Eichhorn, G. L.), 167–202 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  2. Rosenberg, H., and Young, I. G., in Microbial Iron Metabolism. A Comprehensive Treatise (edit. by Neilands, J. B.), 67–82 (Academic, New York, 1974).

    Book  Google Scholar 

  3. Zalkin, A., Forrester, J. D., and Templeton, D. H., J. Am. chem. Soc., 88, 1810–1814 (1966).

    Article  CAS  Google Scholar 

  4. van der Helm, D., and Poling, M., J. Am. chem. Soc., 98, 82–86 (1976).

    Article  CAS  Google Scholar 

  5. Hough, E., and Rogers, D., Biochem. biophys. Res. Commun., 57, 73–77 (1974).

    Article  CAS  Google Scholar 

  6. O'Brien, I. G., and Gibson, F., Biochim. biophys. Acta, 215, 393–402 (1970).

    Article  CAS  Google Scholar 

  7. Freeman, H. C., in Inorganic Biochemistry, 1 (edit. by Eichhorn, G. L.), 121–166 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  8. 6th Royal Australian Chemical Institute C.O.M.O. Conference, Adelaide, May 1975, Abstract ME3.

  9. Sellès, E., Anales de Quim., 27, 569–586 (1927).

    Google Scholar 

  10. Main, P., Woolfson, M. M., and Germain, G., MULTAN. A Computer Programme for Automatic solution of Crystal Structures (University of York, York, 1971).

    Google Scholar 

  11. Raymond, K. N., Isied, S. S., Brown, L. D., Fronczek, F. R., and Nibert, J. H., J. Am. chem. Soc., 98, 1767–1774 (1976).

    Article  CAS  Google Scholar 

  12. Kobayashi, A., Ito, T., Morumo, F., and Saito, Y., Acta crystallogr., B 28, 3446–3451 (1972).

    Article  CAS  Google Scholar 

  13. Allcock, H. R., and Bissell, E. C., J. Am. chem. Soc., 95, 3154–3157 (1973).

    Article  CAS  Google Scholar 

  14. Spartalian, K., Oosterhuis, W. T., and Neilands, J. B., J. chem. Phys., 62, 3538–3543 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Oosterhuis, W. T., Structure Bonding, 20, 59–100 (1974).

    Article  CAS  Google Scholar 

  16. Buckley, A. N., Rumbold, B. A., Wilson, G. V. H., and Murray, K. S., J. chem. Soc. A., 2298–2302 (1970).

    Article  CAS  Google Scholar 

  17. Mackey, D. J., Evans, S. V., and Martin, R. L., J. chem. Soc., Dalton (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ANDERSON, B., BUCKINGHAM, D., ROBERTSON, G. et al. Models for the bacterial iron-transport chelate enterochelin. Nature 262, 722–724 (1976). https://doi.org/10.1038/262722a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262722a0

  • Springer Nature Limited

This article is cited by

Navigation