Skip to main content
Log in

Direct measurement of membrane motion and fluidity by electron microscopy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE mobility of cell membrane components1 has been measured either in the light microscope scale (by visual labelling2 and by the recovery of fluorescent bleaching3,4) or at the molecular level (by nuclear magnetic resonance (NMR)5 and spin label EPR6 methods). In this report, a new method, using electron microscopic techniques to measure membrane motion, is described. This method reduces the spatial and temporal averaging processes inherent in many other methods, and extends the resolution limit of observation to the nanometer scale. The main difficulty in applying electron optical techniques to kinetic measurement had been the requirement that the specimen be placed in a vacuum. The recent development of environmental stages7 has partly overcome this problem. The direct observation of reaction kinetics in an electron microscope is now possible. The application of this technique to biological research enables biological reactions to be observed at high resolution in a physiological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edidin, M., A. Rev. Biophys. Bioengng, 3, 179–201 (1974).

    Article  CAS  Google Scholar 

  2. Albrecht-Buhler, G., and Solomon, F., Expl Cell Res., 85, 225–233 (1974).

    Article  CAS  Google Scholar 

  3. Poo, M. M., and Cone, R. A., Nature, 247, 438–440 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Edidin, M., Zagyenski, Y., and Lardner, T. J., Science, 191, 466–467 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., Biochemistry, 12, 1650–1659 (1973).

    Article  CAS  Google Scholar 

  6. Shimshick, E. J., and McConnell, H. M., Biochemistry, 12, 2351–2360 (1973).

    Article  CAS  Google Scholar 

  7. Parsons, D. F., Science, 186, 407–414 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Papahadjopoulos, D., and Miller, N., Biochim. biophys. Acta, 135, 624–638 (1967).

    Article  CAS  Google Scholar 

  9. Hui, S. W., Parsons, D. F., and Cowden, M., Proc. natn. Acad. Sci. U.S.A., 71, 5068–5072 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Hui, S. W., Hausner, G. G., and Parsons, D. F., J. Phys. E., 9, 69–72 (1976).

    Article  ADS  Google Scholar 

  11. Ulmius, J., Wennerstrom, H., Lindblom, G., and Arvidson, G., Biochim. biophys. Acta, 389, 197–202 (1973).

    Article  Google Scholar 

  12. Hui, S. W., and Parsons, D. F., Science, 190, 383–384 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Ververgert, P. H. J., Verkleij, A. J., Elbers, P. F., and Van Deenen, L. L. M., Biochim. biophys. Acta, 311, 320–329 (1973).

    Article  Google Scholar 

  14. Jung, C. Y., Archs Biochem. Biophys., 147, 215–226 (1971).

    Article  Google Scholar 

  15. Peters, R., Peters, J., Tews, K. H., and Bahr, W., Biochim. biophys. Acta, 367, 282–294 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUI, S. Direct measurement of membrane motion and fluidity by electron microscopy. Nature 262, 303–305 (1976). https://doi.org/10.1038/262303a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262303a0

  • Springer Nature Limited

Navigation