Skip to main content
Log in

Isolation of nucleic acid-binding protein: stimulation of reverse transcriptase-catalysed DNA synthesis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RNA tumour viruses transfer their genetic information from a single-stranded RNA genome found in their virions to a double-stranded DNA covalently integrated into chromosomes of the infected host1,2. A series of nucleic acid intermediates must therefore exist between the single-stranded RNA and the integrated viral DNA genome. The discovery of RNA-directed DNA polymerase (reverse transscriptase) associated with RNA tumour viruses fulfilled a critical requirement for synthesis of viral DNA3,4. The initial product in this information transfer is a RNA–DNA hybrid which is converted into free, unintegrated DNA–DNA5,6. The double-stranded DNA (provirus) is then integrated into chromosomes of the infected host. We report here the isolation of a nucleic acid-binding (unwinding) protein from chick fibroblasts transformed by Rous sarcoma virus (RSV) and its stimulatory effect on DNA synthesis catalysed by reverse transcriptase. A protein capable of unwinding RNA–DNA hybrid and DNA–DNA duplex would not only conserve the input viral RNA strand for further reverse transcription, but also facilitate replication of the double-stranded viral DNA into many copies of provirus before integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varmus, H. E., Bishop, J. M., and Vogt, P. K., J. molec. Biol., 74, 613–626 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Varmus, H. E., Vogt, P. K., and Bishop, J. M., Proc. natn. Acad. Sci. U.S.A., 70, 3067–3071 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Baltimore, D., Nature, 226, 1209–1211 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Temin, H. M., and Mizutani, S., Nature, 266, 1211–1213 (1970).

    Article  ADS  Google Scholar 

  5. Varmus, H. E., Guntaka, R. V., Fan, W. J. W., Heasley, S., and Bishop, J. M., Proc. natn. Acad. Sci. U.S.A., 71, 3874–3878 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Gianni, A. M., Smotkin, D., and Weinberg, R. A., Proc. natn. Acad. Sci. U.S.A., 72, 447–451 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Jones, O. W., and Berg, P., J. molec. Biol., 22, 199–209 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Grandgenette, D., Gerard, G., and Green, M., Proc. natn. Acad. Sci. U.S.A., 70, 230–234 (1973).

    Article  ADS  Google Scholar 

  9. Robinson, W. S., and Robinson, H. L., Virology, 44, 457–462 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  11. Aposhian, H. V., and Kornberg, A., J. biol. Chem., 237, 519–525 (1962).

    CAS  PubMed  Google Scholar 

  12. Spiegelman, S., et al., Nature, 228, 430–432 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Sigal, N., Delius, H., Kornberg, T., Gefter, M. L., and Alberts, B., Proc. natn. Acad. Sci. U.S.A., 69, 3537–3541 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Banks, G. R., and Spanos, A., J. molec. Biol., 93, 63–77 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Molineux, I. J., Friedman, S., and Gefter, M. L., J. biol. Chem., 249, 6060–6098 (1974).

    Google Scholar 

  16. Huberman, J. A., Kornberg, A., and Alberts, B. M., J. molec. Biol., 62, 39–52 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Scherzinger, E., Liftin, F., and Jost, E., Molec. gen. Genet., 123, 247–262 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Reuben, R. C., and Gefter, M. L., J. biol. Chem., 249, 3843–3850 (1974).

    CAS  PubMed  Google Scholar 

  19. Delius, H., Duesberg, P. H., and Mangel, W. F., Cold Spring Harb. Symp. quant. Biol., 39, 835–843 (1974).

    Article  Google Scholar 

  20. Rokutanda, M., et al., Nature, 227, 1026–1028 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Franshier, L., et al., J. Virol., 7, 77–86 (1971).

    Google Scholar 

  22. Bishop, D. H. L., Ruprecht, R., Simpson, R. W., and Spiegelman, S., J. Virol., 8, 730–741 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manly, K. F., Smoler, D. F., Bromfeld, E., and Baltimore, D., J. Virol., 7, 106–111 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson, W. S., Pitkanen, A., and Rubin, H., Proc. natn. Acad. Sci. U.S.A., 54, 137–144 (1965).

    Article  ADS  CAS  Google Scholar 

  25. Peacock, A. C., and Dingman, C. W., Biochemistry, 6, 1818–1825 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUNG, P., LEE, S. Isolation of nucleic acid-binding protein: stimulation of reverse transcriptase-catalysed DNA synthesis. Nature 259, 499–502 (1976). https://doi.org/10.1038/259499a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259499a0

  • Springer Nature Limited

This article is cited by

Navigation