Skip to main content
Log in

Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GENERAL anaesthetics depress postsynaptic excitatory transmission in the vertebrate central and peripheral nervous systems1–4 although preserving or prolonging both presynaptic5–6 and postsynaptic inhibition7–10. The mechanisms underlying these cellular events and their precise relationship with the phenomenon of general anaesthesia in mammals have not been elucidated. We have used various invertebrate preparations to show that pentobarbital and other general anaesthetics operate at a postsynaptic level to depress Na+-dependent postsynaptic excitation without affecting either Cl- or K+-dependent postsynaptic inhibition11,12. Here, using intracellular recording from mouse spinal neurones grown in tissue culture, we show that pentobarbital depresses glutamate excitation and prolongs γ-aminobutyric acid (GABA) inhibition in most cells, through a postsynaptic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weakly, J. N., J. Physiol., Lond., 204, 63 (1969).

    Article  CAS  Google Scholar 

  2. Galindo, A., J. Pharmac. exp. Ther., 177, 360 (1971).

    CAS  Google Scholar 

  3. Westmoreland, B. F., Ward, D., and Johns, T. R., Brain Res., 26, 465 (1971).

    Article  CAS  Google Scholar 

  4. Thomson, T. D., and Turkanis, S. A., Br. J. Pharmac., 48, 48 (1973).

    Article  CAS  Google Scholar 

  5. Schmidt, R. F., Pflugers Archs, 277, 325 (1963).

    Article  CAS  Google Scholar 

  6. Eccles, J. C., Schmidt, R. F., and Willis, W. D., J. Physiol., Lond., 168, 500 (1963).

    Article  CAS  Google Scholar 

  7. Weakly, J. N., Esplin, D. W., and Zablocka, B., Archs int. Pharmac. Ther., 171, 385 (1968).

    CAS  Google Scholar 

  8. Larson, M. D., and Major, M. A., Brain Res., 21, 309 (1970).

    Article  CAS  Google Scholar 

  9. Eccles, J. C., Faber, D. S., and Taborikova, H., Brain Res., 25, 335 (1971).

    Article  CAS  Google Scholar 

  10. Nicoll, R. A., J. Physiol., Lond., 223, 803 (1972).

    Article  CAS  Google Scholar 

  11. Barker, J. L., and Gainer, H., Science, 182, 720 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Barker, J. L., Nature, 252, 52 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Peacock, J. H., Nelson, P. G., and Goldstone, M. W., Devl Biol., 30, 137 (1973).

    Article  CAS  Google Scholar 

  14. Krnjevic, K., Physiol. Rev., 54, 418 (1974).

    Article  CAS  Google Scholar 

  15. Ransom, B. R., and Nelson, P. G., in Handobok of psychopharmacology (edit. by Iversen, L. L., Iversen, S. D., and Snyder, S. H.), 2, 101–127 (Plenum, New York, in the press).

  16. Davidoff, R. A., Science, 175, 351 (1972).

    Article  ADS  Google Scholar 

  17. Barker, J. L., and Nicoll, R. A., Science, 176, 1043 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Barker, J. L., and Nicoll, R. A., J. Physiol., Lond., 228, 259 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RANSOM, B., BARKER, J. Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture. Nature 254, 703–705 (1975). https://doi.org/10.1038/254703a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254703a0

  • Springer Nature Limited

This article is cited by

Navigation