Skip to main content
Log in

Subglacial silica deposits

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SUPERFICIAL carbonate deposits are common on bedrock surfaces recently exposed by retreating temperate glaciers1–5. Their morphology indicates that they formed subglacially in intimate contact with sliding ice. Besides suggesting that chemical transport is an active subglacial process, these relatively widespread deposits reflect high solute concentrations in subglacial waters. This is a fact of considerable significance because solutes at the glacier–bed interface can impede significantly the sliding of temperate glaciers5. The dynamics of temperate glaciers and especially the more intriguing aspects of their behaviour, such as surging6, are thought to depend critically on the basal sliding process7. Thus, chemical exchange at the base of a glacier may affect significantly its entire motion. Moreover, because glacial erosion and deposition are largely dependent on glacial sliding, they too are affected by the presence of solutes at the bed. To date, reported subglacial deposits have all been carbonates. On the basis of previously unrecognised subglacial deposits rich in silica, I suggest that subglacial deposits are not exclusively carbonates, but that silicates are of wider significance, than is believed at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ford, D. C., Fuller, P. G., and Drake, J. J., Nature, 226, 441–442 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Page, N. R., Nature, 229, 42–43 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Kers, L. E., Geol. För. Stockh. Förh., 86, 282–309 (1964).

    Article  Google Scholar 

  4. Bauer, V. G., Z. Gletscherk. Glazialgeol., 4 (3), 215–225 (1961).

    Google Scholar 

  5. Hallet, B., Bull. geol. Soc. Am. (in the press).

  6. Budd, W. F., and McInnes, B. J., Science, 186, 4167, 925–927 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Paterson, W. S. B., J. Glaciol., 9 (55), 55–63 (1970).

    Article  ADS  Google Scholar 

  8. Nye, J. F., Proc. R. Soc., A 311, 445–467 (1969).

    Article  ADS  Google Scholar 

  9. Kamb, B., Rev. Geophys. Space Phys., 8 (4), 673–728 (1970).

    Article  ADS  Google Scholar 

  10. Terwilliger, J. P., and Dizio, S. F., Chem. Engng Sci., 25, 1331–1349 (1970).

    Article  CAS  Google Scholar 

  11. Kvajic, G., and Brajovic, V., J. Cryst. Growth, 11 (1), 73–76 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Seidensticker, R. G., J. chem. Phys., 56 (6), 2853–2857 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Keller, W. D., and Reesman, A. L., Bull. geol. Soc. Am., 74, 61–76 (1963).

    Article  CAS  Google Scholar 

  14. Sigafoos, R. S., and Hendricks, E. L., Prof. Pap. US geol. Surv., 387, B1–B24 (1972).

    Google Scholar 

  15. Krauskopf, K., Geochim. cosmochim. Acta, 10, 1–26 (1956).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HALLET, B. Subglacial silica deposits. Nature 254, 682–683 (1975). https://doi.org/10.1038/254682a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254682a0

  • Springer Nature Limited

This article is cited by

Navigation