Skip to main content
Log in

Cr2+-cobaloxime electron transfer reactions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

COBALT complexes of dimethylglyoxime (CH3C:NOH.C:NOH.CH3), commonly known as cobaloximes, form alkyl derivatives with unusually stable cobalt–carbon bonds1,2. These are regarded by some workers as ‘model’ compounds for vitamin B12, a biological alkylating agent, the action of which depends on the reversible formation of a similar Co–C bond3–5. Various mechanisms have been postulated for this reaction6. The mechanisms of transalkylation reactions undergone by cobaloximes are thus of great interest; such reactions have been investigated with Hg2+ (refs 7 and 8) and with Cr2+ (ref. 9). For comparison we are studying the reaction kinetics of other cobaloximes with Cr2+. These are apparently electron–transfer reactions10–12, and should also be considered in the context of the large volume of work that has been done in that field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dodd, D., and Johnson, M. D., J. organometal. Chem., 52, 1 (1973).

    Article  CAS  Google Scholar 

  2. Schrauzer, G. N., Acc. Chem. Res., 1, 97 (1968).

    Article  CAS  Google Scholar 

  3. Pratt, J. M., The Inorganic Chemistry of Vitamin B12 (Academic Press, New York, (1972).

    Google Scholar 

  4. Prince, R. H., and Stotter, D. A., J. inorg. nucl. Chem., 35, 321 (1973).

    Article  CAS  Google Scholar 

  5. Brown, D. G., Prog. inorg. Chem., 18, 177 (1973).

    CAS  Google Scholar 

  6. Agnes, G., et al., Biochim. biophys. Acta, 252, 207 (1971).

    Article  CAS  Google Scholar 

  7. Adin, A., and Espenson, J. H., J. Chem. Soc., Chem. Commun., 653 (1971).

  8. Schrauzer, G. N., Tetrahedron Lett., 275 (1971).

  9. Espenson, J. H., and Schveima, J. S., J. Am. chem. Soc., 95, 4468 (1973).

    Article  CAS  Google Scholar 

  10. Taube, H., and Gould, E. S., Acc. chem. Res., 2, 321 (1969).

    Article  CAS  Google Scholar 

  11. Sykes, A. G., Adv. Chem. Radiochem., 10, 153 (1967).

    CAS  Google Scholar 

  12. Linck, R. G., Reaction Mechanisms in Inorganic Chemistry, 9, 303 (1972).

    Google Scholar 

  13. Gillard, R. D., and Wilkinson, G., J. chem. Soc., 6041 (1963).

  14. Crumbliss, A. L., et al., J. chem. Soc., chem. Commun., 415 (1973).

  15. Endicott, J. F., et al., J. Am. chem. Soc., 95, 5097 (1973).

    Article  Google Scholar 

  16. Maki, N., Nature, 188, 227 (1960).

    Article  ADS  CAS  Google Scholar 

  17. Schrauzer, G. N., and Windgassen, R. J., J. Am. chem. Soc., 88, 3738 (1966).

    Article  CAS  Google Scholar 

  18. Hohokabe, Y., and Yamazaki, N., Bull. chem. Soc. Japan, 44, 1563 (1971).

    Article  CAS  Google Scholar 

  19. Schrauzer, G. N., and Windgassen, R. J., J. Am. chem. Soc., 89, 1999 (1967).

    Article  CAS  Google Scholar 

  20. Kolthoff, I. M., and Lingane, J. J., Polarography (Interscience, New York, 1941).

    Google Scholar 

  21. Latimer, W. M., The Oxidation States of the Elements and their Potentials in Aqueous Solution (Prentice-Hall, New York, 1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PRINCE, R., SEGAL, M. Cr2+-cobaloxime electron transfer reactions. Nature 249, 246–247 (1974). https://doi.org/10.1038/249246a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249246a0

  • Springer Nature Limited

Navigation