Skip to main content
Log in

Role of rel gene in translation during amino acid starvation in Escherichia coli

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IT has been thought that the rel gene in Escherichia coli is responsible for the stringent control of stable RNA synthesis dependent on a supply of amino acids, since the gene was identified as the site of mutation to the relaxed phenotype1. But in our previous reports2,3, we suggested that mutational defects in rel cells are probably in the translational mechinery, the integrity of which may be required for stringent control. This supposition is based on the following observations: (1) When rel cells are shifted down in carbon or nitrogen source, the stringent control of RNA synthesis is observed in spite of their rel genotype2,4. Only when deprived of amino acids do rel cells fail to restrict RNA synthesis, in contrast to cells having the rel+ allele. (2) Ribosomal inhibitors like chloramphenicol abolish the stringent control in both rel+ and rel cells2,5,6. Furthermore, a cold-sensitive mutant defective in protein synthesis at low temperature earring a mutation in spcA locus, also shows the relaxed phenotype under non-permissive conditions3. It has been reported that several other mutants of rel+ strains having temperature-sensitive phenylalanyl-tRNA synthetase7, peptidyl-tRNA hydrolase8, or elongation factor G (ref. 9) all failed to control the synthesis of RNA at the higher temperature. This suggests that normal synthesis of protein is required for stringent control. (3) During shift-down of a carbon or nitrogen source there is no difference between the growth of rel+ and rel cells. Only after shift-down of amino acids do rel cells require a much longer lag period before they resume growth2,10. This is due to the inability of rel cells to carry out the normal synthesis of protein when the supply of amino-acids is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stent, G. S., and Brenner, S., Proc. natn. Acad. Sci. U.S.A., 47, 2005 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Sokawa, Y., Sokawa, J., and Kaziro, Y., Nature new Biol., 234, 7 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Sokawa, J., Sokawa, Y., and Kaziro, Y., Nature new Biol. 240, 242 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Neidhardt, F. C., Biochim. biophys. Acta, 68, 365 (1963).

    Article  CAS  PubMed  Google Scholar 

  5. Pardee, A. B., and Prestidge, L. S., J. Bact., 71, 677 (1958).

    Google Scholar 

  6. Aronson, A. I., and Spiegelman, S., Biochim. biophys. Acta, 53, 70 (1961).

    Article  CAS  PubMed  Google Scholar 

  7. Atherly, A. G., and Suchanek, M. C., J. Bact., 108, 627 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Atherly, A. G., and Menninger, J. R., Nature new Biol., 240, 245 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Rabbani, E., and Srinivasan, P. R., J. Bact., 113, 1177 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alföldi, L., Stent, G. S., Hoogs, M., and Hill, B., Z. Vererbungslehre, 94, 285 (1963).

    Google Scholar 

  11. Fiil, N., J. molec. Biol., 45, 195 (1969).

    Article  Google Scholar 

  12. Hall, B., and Gallant, J., J. molec. Biol., 61, 271 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Gallant, J., Erlich, H., Hall, B., and Laffler, T., Cold Spring Harb. Symp. quant. Biol., 35, 397 (1970).

    Article  CAS  Google Scholar 

  14. Fiil, N., and Friesen, J. D., J. Bact., 95, 729 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edlin, G., and Broda, P., Bact. Rev., 32, 206 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlessinger, D., The Mechanism of Protein Synthesis and its Regulation (edit. by Bosch, L.), 441 (North-Holland, Amsterdam and London, 1972).

    Google Scholar 

  17. Godson, G. N., Methods in Enzymology, 12 A, 503 (1967).

    Article  Google Scholar 

  18. Ron, E. Z., J. Bact., 108, 263 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Silengo, L., J. Bact., 115, 447 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cozzone, A., and Donini, P., J. molec. Biol., 76, 149 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Engbaek, F., Kjeldgaard, N. O., and Maaløe, O., J. molec. Biol., 75, 109 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Hall, B., and Gallant, J., Nature new Biol., 237, 131 (1972).

    Article  CAS  PubMed  Google Scholar 

  23. Pedersen, F. S., Lung, E., and Kjeldgaard, N. O., Nature new Biol., 243, 13 (1973).

    CAS  PubMed  Google Scholar 

  24. Haseltine, W. A., and Block, R., Proc. natn. Acad. Sci. U.S.A., 70, 1564 (1973).

    Article  ADS  CAS  Google Scholar 

  25. Haseltine, W. A., Block, R., Gilbert, W., and Weber, K., Nature, 238, 381 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SOKAWA, Y., SOKAWA, J. & KAZIRO, Y. Role of rel gene in translation during amino acid starvation in Escherichia coli. Nature 249, 59–62 (1974). https://doi.org/10.1038/249059a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249059a0

  • Springer Nature Limited

This article is cited by

Navigation