Skip to main content
Log in

Antimitotic Action of Griseofulvin does not Involve Disruption of Microtubules

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE antimitotic action of griseofulvin in plant and mammalian cells has been attributed to a colchicine-like disruption of microtubules. Treatment of Vicia faba, Allium root tips or HeLa cells with griseofulvin, for example, resulted in the accumulation of cells at metaphase1–3. The griseo-fulvin-inhibited cells contained abnormal arrays of chromosomes, identical to those produced by treatment of dividing cells with colchicine. Using polarization microscopy, Malawista et al.4 found that the addition of 10−5 M griseofulvin to dividing Pectinaria oocytes reduced the size of the nieiotic spindles, as measured by loss of birefringence. This action was considerably more rapid than with either podophyllotoxin or vinblastine sulphate; moreover, on removal of the griseofulvin, recovery of the spindle also occurred much more rapidly4. Recent evidence indicates that several of the drugs which arrest metaphase interfere with microtubule function through different mechanisms. Colchicine and the vinca alkaloids, for example, bind to tubulin (microtubule protein) at different molecular sites5,6. Griseofulvin does not prevent the binding of colchicine to tubulin, nor does it affect the ability of the vinca alkaloids to stabilize the colchicine binding activity of tubulin5. This suggests that griseofulvin does not bind at either the colchicine or vinca alkaloid binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paget, G. E., and Walpole, A. L., Nature, 182, 1320 (1958).

    Article  ADS  CAS  Google Scholar 

  2. Deysson, G., Ann. pharm. franc., 22, 17 (1964).

    CAS  PubMed  Google Scholar 

  3. Deysson, G., Ann. pharm. franc., 22, 89 (1964).

    CAS  PubMed  Google Scholar 

  4. Malawista, S. E., Sato, H., and Bensch, K. G., Science, 160, 3829 (1968).

    Article  Google Scholar 

  5. Wilson, L., Biochemistry, 9, 4999 (1970).

    Article  CAS  Google Scholar 

  6. Bryan, J., Biochemistry, 11, 2611 (1972).

    Article  CAS  Google Scholar 

  7. Weisenberg, R. C., Science, 177, 1104 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Borisy, G. G., and Olmsted, J. B., Science, 177, 1196 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Hepler, P. K., and Jackson, W. T., J. Cell Sci., 5, 727 (1969).

    CAS  PubMed  Google Scholar 

  10. McIntosh, J. R., Hepler, P. K., and Van Wie, D. G., Nature, 244, 659 (1969).

    Article  ADS  Google Scholar 

  11. Gordon, G. B., Miller, L. R., and Bensch, K. G., Exp. Cell Res., 31, 440 (1963).

    Article  CAS  Google Scholar 

  12. Palade, G. E., J. Exp. Med., 95, 285 (1952).

    Article  CAS  Google Scholar 

  13. Freeman, J., and Spurlock, B., J. Cell Biol., 13, 437 (1962).

    Article  CAS  Google Scholar 

  14. Sjostrand, F. S., J. Ultrastruct. Res., 9, 340 (1963).

    Article  Google Scholar 

  15. Reynolds, E. S., J. Cell Biol., 17, 208 (1963).

    Article  CAS  Google Scholar 

  16. Mizel, S. B., and Wilson, L., Biochemistry, 11, 2573 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GRISHAM, L., WILSON, L. & BENSCH, K. Antimitotic Action of Griseofulvin does not Involve Disruption of Microtubules. Nature 244, 294–296 (1973). https://doi.org/10.1038/244294a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/244294a0

  • Springer Nature Limited

This article is cited by

Navigation