Skip to main content
Log in

Ion Uptake and Root Age

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IT has been widely assumed that the translocation of nutrient ions to plant shoots occurs chiefly from young extending zones of tissue within 1 cm of the apical meri-stems of roots. The rapid accumulation of ions which can occur in this zone1–3, its high metabolic activity4–7 and the fact that considerable thickening of the endodermis seems to create a barrier to the entry of ions into the stele4,8 have been regarded as evidence for this. Results of more recent studies have indicated, however, that translocation occurs to an approximately constant extent over the apical 6 cm of cereal roots9,10 despite the progressive development of the endodermis8. These findings encourage the study of nutrient absorption and translocation by older parts of the root axis. Information on this question is relevant both to the elucidation of the effects of the structure of roots on their capacity to absorb ions, and to the assessment of the limitations which the rate of ionic diffusion in soil11,12 may impose on plant nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steward, F. C., and Sutcliffe, J. F., Plant Physiology, 2, 454 (Academic Press, NY, 1959).

    Google Scholar 

  2. Bowen, G. D., and Rovira, A. D., Austral. J. Biol. Sci., 20, 369 (1967).

    Article  CAS  Google Scholar 

  3. Rovira, A. D., and Bowen, G. D., Nature, 218, 685 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Steward, F. C., Prevot, P., and Harrison, J. A., Plant Physiol., Lancaster, 17, 411 (1942).

    Article  CAS  Google Scholar 

  5. Berry, J. E., and Norris, Jun., W. E., Biochim. Biophys. Acta, 3, 593 (1949).

    Article  CAS  Google Scholar 

  6. Brown, R., and Broadbent, D., J. Exp. Bot., 1, 249 (1951).

    Article  Google Scholar 

  7. Lund, H. A., Vatter, A. E., and Hanson, J. B., J. Biophys. Biochem. Cytol., 4, 87 (1958).

    Article  CAS  Google Scholar 

  8. Van Fleet, D. S., Bot. Rev., 27, 165 (1961).

    Article  CAS  Google Scholar 

  9. Wiebe, H. H., and Kramer, P. J., Plant Physiol., Lancaster, 29, 342 (1954).

    Article  CAS  Google Scholar 

  10. Russell, R. S., and Sanderson, J., J. Exp. Bot., 18, 491 (1967).

    Article  Google Scholar 

  11. Lewis, D. G., and Quirk, J. P., Nature, 205, 765 (1965).

    Article  ADS  CAS  Google Scholar 

  12. Nye, P. M., Pl. Soil, 25, 81 (1966).

    Article  CAS  Google Scholar 

  13. Russell, R. S., and Squire, H. M., J. Exp. Bot., 9, 262 (1958).

    Article  CAS  Google Scholar 

  14. Appleton, T. C., J. Roy. Microsc. Soc., 83, 277 (1959).

    Article  Google Scholar 

  15. Crossett, R. N., Nature, 213, 312 (1967).

    Article  ADS  Google Scholar 

  16. Rogers, A. W., Techniques of Autoradiography (Elsevier, Amsterdam, 1967).

    Google Scholar 

  17. Barber, D. A., Sanderson, J., and Russell, R. S., Nature, 217, 644 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Clarkson, D. T., and Sanderson, J., Agricultural Research Council Radiobiological Laboratory Report ARCRL, 18, 30 (1968).

  19. Bryant, A. E., New Phytol., 33, 231 (1934).

    Article  Google Scholar 

  20. Biddulph, S. F., Planta, 74, 350 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLARKSON, D., SANDERSON, J. & RUSSELL, R. Ion Uptake and Root Age. Nature 220, 805–806 (1968). https://doi.org/10.1038/220805a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/220805a0

  • Springer Nature Limited

This article is cited by

Navigation