Skip to main content
Log in

Five-coordination and Paramagnetic Anisotropy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CONSIDERABLE effort has been devoted recently to the establishment of simple experimental criteria by which the stereochemistry of five-coordinate transition metal species can be recognized. They have been primarily concerned with examination of the electronic spectra and, when paramagnetic, the bulk (powder) susceptibilities. These techniques have long been used successfully to differentiate between octahedral and tetrahedral coordination in complexes. It must be emphasized, however, that this success is dependent on only these two alternative stereochemistries having been previously established. A substantial number of five-coordinate complexes of nickel(II) and cobalt(II) have been prepared and some of these have sufficiently distinctive electronic reflectance spectra to reveal their geometry. The point dipole and point charge calculations of Ciampolini1, of Ciampolini and Bettini (personal communication) and of Wood2 have provided bases for their assignment and also for the low temperature polarized single crystal spectra (unpublished work of Kohl, Gerloch and Lewis) of the molecules, M (arsine oxide)4X2 (M = Co, Ni; X = ClO4−, NO3−). By contrast the reflectance spectrum of β-Co(paphy)Cl2 may be equally well assigned3 on the basis of octahedral or tetrahedral stereochemistry although the X-ray data4 established this as five-coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciampolini, M., Inorg. Chem., 5, 35 (1966).

    Article  CAS  Google Scholar 

  2. Wood, J. S., Inorg. Chem., 7, 852 (1968).

    Article  CAS  Google Scholar 

  3. Lions, F., Dance, I. G., and Lewis, J., J. Chem. Soc., A, 565 (1967).

  4. Gerloch, M., J. Chem. Soc., A, 1317 (1966).

  5. Van Vleck, J. H., Phys. Rev., 41, 208 (1932).

    Article  ADS  CAS  Google Scholar 

  6. Gerloch, M., and Mabbs, F. E., J. Chem. Soc., A, 1598 (1957).

  7. Griffith, J. S., Mol. Phys., 8, 213 (1964).

    Article  ADS  CAS  Google Scholar 

  8. Gibson, J. F., Ingram, D. J. E., and Schonland, D., Disc. Faraday Soc., 26, 72 (1958).

    Article  Google Scholar 

  9. Orioli, P. L., Di Vaira, M., and Sacconi, L., J. Amer. Chem. Soc., 88, 4383 (1966).

    Article  CAS  Google Scholar 

  10. Figgis, B. N., and Lewis, J., Progress in Inorganic Chemistry, 6, 37 (1964).

    CAS  Google Scholar 

  11. Krishnan, K. S., and Banerjee, S., Phil. Trans. A, 234, 265 (1934).

    Article  ADS  Google Scholar 

  12. Figgis, B. N., and Lewis, J., in Techniques of Inorganic Chemistry (edit. by Jonassen, H. B., and Weissberger, A.), 4, 137 (1965).

    Google Scholar 

  13. Bose, A., Mitra, S. C., and Datta, S. K., Proc. Roy. Soc., A, 248, 153 (1958).

    Article  ADS  CAS  Google Scholar 

  14. Figgis, B. N., Lewis, J., Mabbs, F. E., and Webb, G. A., J. Chem. Soc., A, 1411 (1966).

  15. Figgis, B. N., Gerloch, M., and Mason, R., Proc. Roy. Soc., A, 279, 210 (1964).

    Article  ADS  CAS  Google Scholar 

  16. Jackson, L. C., Proc. Roy. Soc., A, 140, 695 (1933).

    Article  ADS  CAS  Google Scholar 

  17. Ginsberg, A. P., and Robin, M. B., Inorg. Chem., 2, 817 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BROWN, D., GERLOCH, M. & LEWIS, J. Five-coordination and Paramagnetic Anisotropy. Nature 220, 256–257 (1968). https://doi.org/10.1038/220256a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/220256a0

  • Springer Nature Limited

Navigation