Skip to main content
Log in

Genetic Analysis of the First Steps of Sulphate Metabolism in Aspergillus nidulans

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PHENOTYPIC analysis of interactions between different mutations in the same genome often helps elucidate the structure and function of the loci in question. If, in a series of mutations affecting a linear pathway, each non-allelic mutation has a characteristic phenotype, then the order of the steps they affect can be determined from the phenotypes of double mutants. A (“non-leaky”) mutation blocking one step in the pathway will be epistatic to all those blocking later steps. The minimum number of different double mutants sufficient to determine unequivocally the order of loci participation on a linear pathway equals the number of different loci (the total number of different double mutants equals n(n−l)/2 where n equals the number of different loci). This communication reports application of this method in Aspergillus nidulans to four loci where mutation can result in loss of ability to use sulphate but not sulphite as a sulphur source and indicates that these four loci are involved in the conversion of sulphate to a metabolite which interferes with utilization of exogenous choline O-sulphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hussey, C., Orsi, B. A., Scott, J., and Spencer, B., Nature, 207, 632 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Dorn, G. L., Genetics, 56, 619 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pardee, A. B., Prestidge, L. S., Whipple, M. B., and Dreyfuss, J., J. Biol. Chem., 241, 3962 (1966).

    CAS  PubMed  Google Scholar 

  4. Shrift, A., Fed. Proc., 20, 695 (1961).

    CAS  Google Scholar 

  5. Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D., and Bufton, A. W. J., Adv. Genet., 5, 141 (1953).

    Article  CAS  Google Scholar 

  6. Dreyfuss, J., J. Biol. Chem., 239, 2292 (1964).

    CAS  PubMed  Google Scholar 

  7. Mizobuchi, K., Demerec, M., and Gillespie, D. H., Genetics, 47, 1617 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, J. M., and Spencer, B., Biochem. J., 96, 78P (1965).

    Google Scholar 

  9. Dreyfuss, J., and Pardee, A. B., J. Bacteriol., 91, 2275 (1966).

    Article  CAS  Google Scholar 

  10. Käfer, E., Adv. Genetics, 9, 105 (1958).

    Article  Google Scholar 

  11. Horowitz, N. H., Bonner, D., and Houlahan, M. B., J. Biol. Chem., 159, 145 (1945).

    CAS  Google Scholar 

  12. Takebe, I., J. Gen. Appl. Microbiol., 6, 83 (1960).

    Article  CAS  Google Scholar 

  13. Harada, T., and Spencer, B., J. Gen. Microbiol., 22, 520 (1960).

    Article  CAS  Google Scholar 

  14. Scott, J., and Spencer, B., Biochem. J., 95, 50P (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ARST, H. Genetic Analysis of the First Steps of Sulphate Metabolism in Aspergillus nidulans. Nature 219, 268–270 (1968). https://doi.org/10.1038/219268a0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/219268a0

  • Springer Nature Limited

This article is cited by

Navigation