Skip to main content
Log in

Alternate Pathways of Glycerol Oxidation in Acetobacter suboxydans

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A PREVIOUS publication from this laboratory1 has reported in detail the rapid oxidation of glycerol to dihydroxyacetone by resting whole cells of A. suboxydans 621, at pH 6.0. This conversion proceeds more slowly beyond the dihydroxyacetone stage. In cell-free extracts with triphenyltetrazolium chloride as the electron acceptor, glycerol is oxidized at a rate comparable to the oxidation of dihydroxyacetone, with the pH optimum about 8.5. This contrasting behaviour has been found to be due to the presence of two major oxidative routes for glycerol oxidation, one phosphorylative, the other independent of phosphate, as shown in Table 1. With cell-free extracts at pH 8.5, adenosine triphosphate is obligatory (in kinase systems) not only for the oxidation of glycerol but also for dihydroxyacetone, glucose, ribose or erythritol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King, T. E., and Cheldelin, V. H., J. Bact., 66, 581 (1953).

    CAS  PubMed  Google Scholar 

  2. Horecker, B. L., Brewers Digest, 28, 214 (1953).

    Google Scholar 

  3. Hauge, J. G., King, T. E., and Cheldelin, V. H., Fed. Proc., 13, 225 (1954).

    Google Scholar 

  4. Roe, J. H., J. Biol. Chem., 107, 15 (1934).

    CAS  Google Scholar 

  5. King, T. E., and Cheldelin, V. H., J. Biol. Chem., 198, 127 (1952).

    CAS  PubMed  Google Scholar 

  6. Horecker, B. L., Gibbs, M., Klenow, H., and Smyrniotis, P. Z., J. Biol. Chem., 207, 393 (1954).

    CAS  PubMed  Google Scholar 

  7. Axelrod, B., Bandurski, R. S., Greiner, C. M., and Jang, R., J. Biol. Chem., 202, 619 (1953). Gibbs, M., and Horecker, B. L., J. Biol. Chem., 208, 813 (1954).

    CAS  PubMed  Google Scholar 

  8. Racker, E., de la Haba, G., and Leder, I. G., J. Amer. Chem. Soc., 75, 1010 (1953).

    Article  CAS  Google Scholar 

  9. Lanning, M. C., and Cohen, S. S., J. Biol. Chem., 207, 193 (1954).

    CAS  PubMed  Google Scholar 

  10. Newburgh, R. W., and Cheldelin, V. H. (unpublished observations).

  11. King, T. E., and Cheldelin, V. H., Biochim. Biophys. Acta, 14, 108 (1954).

    Article  CAS  Google Scholar 

  12. Mejbaum, W., Z. physiol. Chem., 258, 117 (1939).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAUGE, J., KING, T. & CHELDELIN, V. Alternate Pathways of Glycerol Oxidation in Acetobacter suboxydans . Nature 174, 1104–1105 (1954). https://doi.org/10.1038/1741104a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1741104a0

  • Springer Nature Limited

Navigation