Skip to main content

Advertisement

Log in

Orthogonal polarization spectral imaging: A new method for study of the microcirculation

  • On the Market
  • Published:

From Nature Medicine

View current issue Submit your manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: a, Orthogonal polarization spectral imaging probe.
Figure 2: Images of the microcirculation dorsal skinfold preparation of the awake hamster taken during fluorescence intravital microscopy (a and c) and OPS imaging (b and d).
Figure 3: Quantitative determination of optical density in vitro.
Figure 4: OPS images of human microcirculation.

References

  1. Forst, T. et al. Skin microcirculation in patients with type I diabetes with and without neuropathy after neurovascular stimulation. Clin. Sci. 94, 255–261 ( 1998).

    Article  CAS  Google Scholar 

  2. Fagrell, B. & Bollinger, A. in Clinical Capillaroscopy: A Guide to Its Use in Clinical Research and Practice (Hogrefe & Huber, Seattle, Washington, 1990).

    Google Scholar 

  3. Fagrell, B. & Intaglietta, M. Microcirculation: Its significance in clinical and molecular medicine. J. Int. Med. 241 , 349–362 (1997).

    Article  CAS  Google Scholar 

  4. Davis, E. & Landau, J. in Clinical Capillary Microscopy (Thomas, Springfield, Illinois, 1966).

    Google Scholar 

  5. Fenton, B.M., Zweifach, B.W. & Worthen, D.M. Quantitative morphometry of conjunctival microcirculation in diabetes mellitus. Microvasc. Res. 18, 153–166 (1979).

    Article  CAS  Google Scholar 

  6. Wolf, S., Arend, O., Schulte, K., Ittel, T.H. & Reim, M. Quantification of retinal capillary density and flow velocity in patients with essential hypertension. Hypertension 23, 464–467 (1994).

    Article  CAS  Google Scholar 

  7. Bussau, L.J. et al. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo. J. Anat. 192 (Pt. 2), 187–194 ( 1998).

    Article  Google Scholar 

  8. Rajadhyaksha, M., Grossman, M., Esterowitz, D., Webb, R.H. & Anderson, R.R. In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. J. Invest. Dermatol. 104, 946–952 (1995).

    Article  CAS  Google Scholar 

  9. MacKintosh, F.C., Zhu, J.X., Pine, D.J. & Weitz, D.A. Polarization memory of multiply scattered light. Phys. Rev. B 40, 9342 (1989).

    Article  CAS  Google Scholar 

  10. Schmitt, J.M., Gandjbakhche, A.H. & Bonner, R.F. Use of polarized light to discriminate short-path photons in a multiply scattering medium. Appl. Opt. 31, 6535 (1992).

    Article  CAS  Google Scholar 

  11. Kortüm, G. in Reflectance Spectroscopy (Springer-Verlag, New York, 1969).

    Book  Google Scholar 

  12. Star, W.M., Marijnissen, J.P.A. & van Gemert, M.J.C. Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory. Phys. Med. Biol. 33, 437–454 ( 1988).

    Article  CAS  Google Scholar 

  13. Harris, A.G., Leiderer, R., Peer, F. & Messmer, K. Skeletal muscle microvascular and tissue injury after varying durations of ischemia. Am. J. Physiol. 271, H2388–2398 (1996).

    CAS  PubMed  Google Scholar 

  14. Harris, A.G., Hecht, R., Peer, F., Nolte, D. & Messmer, K. An improved intravital microscopy system. Int. J. Microcirc. Clin. Exp. 17, 322– 327 (1997).

    Article  CAS  Google Scholar 

  15. Nolte, D., Zeintl, H., Steinbauer, M., Pickelmann, S. & Messmer, K. Functional capillary density: An indicator of tissue perfusion? Int. J. Microcirc. Clin. Exp. 15, 244–249 (1995).

    Article  CAS  Google Scholar 

  16. Bland, J.M. & Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i, 307–310 (1986).

    Article  Google Scholar 

  17. Pittman, R.N. & Duling, B.R. Measurement of percent oxyhemoglobin in the microvasculature. J. Appl. Physiol. 38, 321–327 (1975).

    Article  CAS  Google Scholar 

  18. Pittman, R.N. & Duling, B.R. A new method for the measurement of percent oxyhemoglobin. J. Appl. Physiol. 38, 315–320 (1975).

    Article  CAS  Google Scholar 

  19. Lipowsky, H.H., Usami, S., Chien, S. & Pittman, R.N. Hematocrit determination in small bore tubes by differential spectrophotometry. Microvasc. Res. 24, 42–55 ( 1982).

    Article  CAS  Google Scholar 

  20. Klyscz, T., Jünger, M., Jung, F. & Zeintl, H. Cap image—a new kind of computer-assisted video image analysis system for dynamic capillary microscopy. Biomed. Tech. (Berlin) 42, 168–175 (1997).

    Article  CAS  Google Scholar 

  21. Winkelman, J.W. Apparatus and method for in vivo analysis of red and white blood cell indices. US Patent 4998553 (1991).

  22. Peele, J.D., Gadsen, R.H. & Crews, R. Evaluation of Ames' "Clini-Tek." Clin. Chem. 123, 2238–2241 ( 1977).

    Google Scholar 

  23. Nolte, D., Menger, M.D. & Messmer, K. Microcirculatory models of ischaemia-reperfusion in skin and striated muscle. Int. J. Microcirc.Clin. Exp. 15, 9–16 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Loeb, G. Fletcher, C. Cook, A. Perkins, R. Pittman and R. Johnson for discussions and critically reviewing the manuscript. These studies were funded in part by Cytometrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Nadeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groner, W., Winkelman, J., Harris, A. et al. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nat Med 5, 1209–1212 (1999). https://doi.org/10.1038/13529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/13529

  • Springer Nature America, Inc.

This article is cited by

Navigation