Skip to main content
Log in

Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The computational burden associated with applications of theTolerable Windows Approach (TWA) considerably exceeds that oftraditional integrated assessments of global climate change. Aspart of the ICLIPS (Integrated Assessment of Climate ProtectionStrategies) project, a computationally efficient climate model hasbeen developed that can be included in integrated assessmentmodels of any kind. The ICLIPS climate model (ICM) is implementedin GAMS. It is driven by anthropogenic emissions of CO2,CH4, N2O, halocarbons, SF6, andSO2. Theoutput includes transient patterns of near-surface airtemperature, total column-integrated cloud cover fraction,precipitation, humidity, and global mean sea-level rise. Thecarbon cycle module explicitly treats the nonlinear sea watercarbon chemistry and the nonlinear CO2 fertilized biosphereuptake. Patterns of the impact-relevant climate variables arederived form empirical orthogonal function (EOF) analysis andscaled by the principal component of temperature change. Theevolution of the latter is derived from a box-model-typedifferential analogue to its impulse response function convolutionintegral. We present a description of the ICM components and someresults to demonstrate the model's applicability in the TWA setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooke, A., Kendrick, D., and Meeraus, A.: 1992, GAMS, A User's Guide, Release 2.25, The Scientific Press, San Francisco, CA.

    Google Scholar 

  • Bruckner, T., Petschel-Held, G., Leimbach, M., and Toth, F. L.: 2003, ‘Methodological Aspects of the Tolerable Windows Approach’, Clim. Change, this issue.

  • Füssel, H.-M., Toth, F. L., van Minnen, J. G., and Kaspar, F.: 2003, ‘Climate Impact Response Functions as Impact Tools in the Tolerable Windows Approach’, Clim. Change, this issue.

  • Harvey, L. D. D.: 1989, ‘Managing Atmospheric CO2’, Clim. Change 15, 343–381.

    Google Scholar 

  • Harvey, L. D. D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S. C. B., Wigley, T. M. L., and de Wolde, J. R.: 1997, ‘An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report’, in Houghton, J. T., Meira Filho, L. G., Griggs, D. J., and Maskell, K. (eds.), IPCC Technical Paper II, IPCC, Geneva, Switzerland.

    Google Scholar 

  • Hasselmann, K., Sausen, R., Maier-Reimer, E., and Voss, R.: 1993, ‘On the Cold Start Problem in Transient Simulations with Coupled Atmosphere-ocean Models’, Clim. Dyn. 9, 53–61.

    Google Scholar 

  • Hooss, K. G.: 2001, Aggregate Models of Climate Change: Development and Applications, Max Planck Institute for Meteorology, Examensarbeit 83, Dissertation am Fachbereich Geowissenschaften der Universität Hamburg, Hamburg, Germany.

    Google Scholar 

  • Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E., and Joos, F.: 2001, ‘A Nonlinear Impulse Response Model of the Coupled Carbon Cycle — Climate System (NICCS)’, Clim. Dyn. 18, 189–202.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change): 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change): 2000, Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Joos, F. and Bruno, M.: 1996, ‘Pulse Response Functions Are Cost-efficient Tools to Model the Link between Carbon Emissions, Atmospheric CO2 and Global Warming’, Phys. Chem. Earth 21, 471–477.

    Google Scholar 

  • Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., LeQuéré, C., and Sarmiento, J.: 1996, ‘An Efficient and Accurate Representation of Complex Oceanic and Biospheric Models of Anthropogenic Carbon Uptake’, Tellus 48B, 397–417.

    Google Scholar 

  • Joos, F., Prentice, C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and Hasselmann, K.: 2001, ‘GlobalWarming Feedbacks on Terrestrial Carbon Uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios’, Global Biogeochem. Cycles 15, 891–907.

    Google Scholar 

  • Kicklighter, D. W., Bruno, M., Dönges, S., Esser, G., Heimann, M., Helfrich, J., Ift, F., Joos, F., Kaduk, J., Kohlmaier, G. H., McGuire, D., Melillo, J. M., Meyer, R., Moore, B., Nadler, A., Prentice, C., Sauf, W., Schloss, A. L., Sitch, S., Wittenberg, U., and Würth, G.: 1999, ‘A Firstorder Analysis of the Potential Role of CO2 Fertilization to Affect the Global Carbon Budget: A Comparison of Four Terrestrial Biosphere Models’, Tellus 51B, 343–366.

    Google Scholar 

  • Leimbach, M. and Toth, F. L.: 2003, ‘Economic Development and Emission Control over the Long Term: The ICLIPS Aggregated Economic Model’, Clim. Change, this issue.

  • Maier-Reimer, E.: 1993, ‘The Biological Pump in the Greenhouse’, Global Plan. Clim. Change 8, 13–15.

    Google Scholar 

  • Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and Storage of CO2 in the Ocean — an Inorganic Ocean-circulation Carbon Cycle Model’, Clim. Dyn. 2, 63–90.

    Google Scholar 

  • Meyer, R., Joos, F., Esser, G., Heimann, M., Hooss, G., Kohlmaier, G., Sauf, W., Voss, R., and Wittenberg, U.: 1999, ‘The Substitution of High-resolution Terrestrial Biosphere Models and Carbon Sequestration in Response to Changing CO2 and Climate’, Global Biogeochem. Cycles 13, 785–802.

    Google Scholar 

  • Mitchell, J. F. B., Johns, T. C., Eagles, M., Ingram, W. J., and Davis, R. A.: 1999, ‘Towards the Construction of Climate Change Scenarios’, Clim. Change 41, 547–581.

    Google Scholar 

  • Myhre, G., Highwood, J., Shine, K. P., and Stordal, F.: 1998, ‘New Estimates of Radiative Forcing Due to Well Mixed Greenhouse Gases’, Geophys. Res. Lett. 25, 2715–2718.

    Google Scholar 

  • Osborn, T. J. and Wigley, T. M. L.: 1994, ‘A Simple Model for Estimating Methane Concentrations and Lifetime Variations’, Clim. Dyn. 9, 181–193.

    Google Scholar 

  • Peixoto, J. P. and Oort, A. H.: 1992, Physics of Climate, American Institute of Physics, New York, NY.

    Google Scholar 

  • Petschel-Held, G. and Schellnhuber, H.-J.: 1997, ‘The Tolerable Windows Approach to Climate Control: Optimization, Risks, and Perspectives’, in Toth, F. L. (ed.), Cost-benefit Analysis of Climate Change: The Broader Perspectives, Birkhäuser, Basel, Switzerland, pp. 121–139.

    Google Scholar 

  • Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Toth, F. L., and Hasselmann, K.: 1999, ‘The Tolerable Windows Approach: Theoretical and Methodological Foundations’, Clim. Change 41, 303–331.

    Google Scholar 

  • Prentice, I. C. (co-ordinating lead author) et al.: 2001, ‘The Carbon Cycle and Atmospheric Carbon Dioxide’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Ramaswamy, V. (co-ordinating lead author) et al.: 2001, ‘Radiative Forcing of Climate Change’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Robock, A., Turco, R. P., Harwell, M. A., Ackerman, T. P., Andressen, R., Chang, H.-S., and Sivakumar, M. V. K.: 1993, ‘Use of GCM Output for Impact Analysis’, Clim. Change 23, 293–335.

    Google Scholar 

  • Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, Report No. 47, Max Planck Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Schultz, P. A. and Kasting, J. F.: 1997, ‘Optimal Reductions in CO2 Emissions’, Energy Policy 25, 491–500.

    Google Scholar 

  • Shine, K. P., Derwent, R. G., Wuebbles, D. J., Morcrette, J.-J.: 1990, ‘Radiative Forcing of Climate’, in IPCC, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., pp. 49–68.

    Google Scholar 

  • Siegenthaler, U. and Joos, F.: 1992, ‘Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle’, Tellus 44B, 186–207.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H.: 1978, ‘Predicting Future Atmospheric Carbon Dioxide Levels’, Science 199, 388–395.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions during the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 104–154.

    Google Scholar 

  • Smith, J. B. and Pitts, J. B.: 1997, ‘Regional Climate Change Scenarios for Vulnerability and Adaptation Assessments’, Clim. Change 36, 3–21.

    Google Scholar 

  • Smith, J. B., Schellnhuber, H.-J., Mirza, M. Q. (co-ordinating lead authors) et al.: 2001, ‘Vulnerability to Climate Change and Reasons for Concern: A Synthesis’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge, U.K., pp. 913–967.

    Google Scholar 

  • Toth, F. L., Bruckner, T., Füssel, H.-M., Leimbach, M., and Petschel-Held, G.: 2003a, ‘Integrated Assessment of Long-term Climate Policies: Part 2 — Model Results and Uncertainty Analysis’, Clim. Change, this issue.

  • Toth, F. L., Bruckner, T., Füssel, H.-M., Leimbach, M., and Petschel-Held, G.: 2003b, ‘Integrated Assessment of Long-term Climate Policies: Part 1 — Model Presentation’, Clim. Change, this issue.

  • Toth, F. L., Bruckner, T., Füssel, H.-M., Leimbach, M., Petschel-Held, G., and Schellnhuber, H.-J.: 1997, ‘The Tolerable Windows Approach to Integrated Assessments’, in Cameron, O. K., Fukuwatari, K., and Morita, T. (eds.), Climate Change and Integrated Assessment Models [IAMs]Bridging the Gaps, Proceedings of the IPCC Asia-Pacific Workshop on Integrated Assessment Models, Center for Global Environmental Research, Tsukuba, Japan, pp. 403–430.

  • von Storch, H. and Navarra, A. (eds.): 1995, Analysis of Climate Variability: Applications of Statistical Techniques, Springer, Berlin, Germany.

    Google Scholar 

  • Voss, R. and Mikolajewicz, U.: 2001, ‘Long-term Climate Changes Due to Increased CO2 Concentration in the Coupled Atmosphere-ocean General Circulation Model ECHAM3/LSG’, Clim. Dyn. 17, 45–60.

    Google Scholar 

  • Voss, R., Sausen, R., and Cubasch, U.: 1998, ‘Periodically Synchronously Coupled Integrations with the Atmosphere-ocean General Circulation Model ECHAM3/LSG’, Clim. Dyn. 14, 249–266.

    Google Scholar 

  • Warrick, R. A. and Oerlemans, J.: 1990, ‘Sea Level Rise’, in IPCC, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., pp. 257–282.

    Google Scholar 

  • WBGU (German Advisory Council on Global Change): 1995, Scenario for the Derivation of Global CO 2 Reduction Targets and Implementation Strategies, WBGU, Bremerhaven, Germany.

    Google Scholar 

  • WBGU (German Advisory Council on Global Change): 1996, World in Transition: Ways Towards Global Environmental Solutions, Springer, Berlin, Germany.

    Google Scholar 

  • Wigley, T. M. L.: 1994, MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change): User's Guide and Scientific Reference Manual, National Centre for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Wigley, T. M. L.: 1988, ‘Future CFC Concentrations under the Montreal Protocol and their Greenhouse-effect Implications’, Nature 335, 333–335.

    Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for Climate and Sea Level Rise of Revised IPCC Emission Scenarios’, Nature 357, 293–357.

    Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1993, ‘Future Changes in Global Mean Temperature and Sea Level’, in Warrick, R. A., Barrow, E. M., and Wigley, T. M. L. (eds.), Climate and Sea Level Change: Observations, Projections and Implications, Cambridge University Press, Cambridge, U.K., pp. 111–133.

    Google Scholar 

  • Wigley, T. M. L., Raper, S. C. B., and Salmon, M.: 1996, Source Code of the MAGICC Model (as Used in MiniCam, Version 2.0), Climate Research Unit, University of East Anglia, Norwich, U.K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruckner, T., Hooss, G., Füssel, HM. et al. Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model. Climatic Change 56, 119–137 (2003). https://doi.org/10.1023/A:1021300924356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021300924356

Keywords

Navigation