Atkinson B, Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook. MacMillan, Surrey: 1117 pp.
Google Scholar
Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. appl. Phycol. 6: 123-129.
Google Scholar
Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University, Cambridge: 293 pp.
Google Scholar
Borowitzka MA (1992) Algal biotechnology products and process-Matching science and economics. J. appl. Phycol. 4: 267-279.
Google Scholar
Borowitzka MA (1997) Microalgae for aquaculture: Opportunities and constrains. J. appl. Phycol. 9: 393-401.
Google Scholar
Borowitzka MA (1999) Commercial production of microalgae: Ponds, tanks, tubes and fermentors. J. Biotechnol. 70: 313-321.
Google Scholar
Chaumont D (1993) Biotechnology of algal biomass production: A review of systems for outdoor mass culture. J. appl. Phycol. 5: 593-604.
Google Scholar
Chaumont D, Thepenier C, Gudin C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum-From laboratory to pilot plant. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 199-208.
Google Scholar
Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. appl. Phycol. 3: 203-209.
Google Scholar
Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem. 31: 601-604.
Google Scholar
Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224.
Google Scholar
Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18: 603-608.
Google Scholar
Cohen Z (1999) Porphyridium cruentum. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Google Scholar
Cook JR, Heinrich B (1965) Glucose vs acetate metabolism in Euglena. J. Protozool. 12: 581-583
Google Scholar
Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technol. 38: 245-250.
Google Scholar
Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Algol. Stud. (Trebon) 76: 129-147.
Google Scholar
Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature, London 175: 42.
Google Scholar
Droop MR (1974) Heterotrophy of carbon. In Stewart WDP (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 530-559.
Google Scholar
Edmund T, Lee Y, Bazin MJ (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytol. 116: 331-335.
Google Scholar
Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18:199-205.
Google Scholar
Fernandez AFG, Camacho GF, Perez SJA, Sevilla FJM, Grima ME (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioengng. 58: 605-616.
Google Scholar
Garcia MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. appl. Phycol. 12: 239-248.
Google Scholar
Gladue RM (1991) Heterotrophic microalgae production: Potential for application to aquaculture feeds. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems, Oceanic Institute, Honolulu, pp. 275-286.
Google Scholar
Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J. appl. Phycol. 6: 131-141.
Google Scholar
Grima EM, Perez JAS, Camacho FG, Sanchez JLG, Fernandez FGA, Alonso DL (1994) Outdoor culture of Isochrysis galbana Alii-4 in a closed tubular photobioreactor. J. Biotechnol. 37: 159-166.
Google Scholar
Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1996) Productivity analysis of outdoor chemostat culture in tubular air-lift photobiorectors. J. appl. Phycol. 8: 369-380.
Google Scholar
Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J. appl. Phycol. 6: 331-335.
Google Scholar
Grobbelaar JU (2000) Physiological and technological considerations for optimisingmass algal cultures. J. appl. Phycol. 12: 201-206.
Google Scholar
Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. appl. Phycol. 8: 335-343.
Google Scholar
Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors. In Palz W, Pirruitz D (eds), Energy from Biomass Series E Vol. 5, Reidel, Dordrecht, pp. 184-193.
Google Scholar
Guterman H, Ben Yaskov S, Vonshak A (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioengng. 34: 143-152.
Google Scholar
Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol. 53: 14-20.
Google Scholar
Hoare DS, Hoare SL, Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49: 351-370.
Google Scholar
Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengng 51: 51-60.
Google Scholar
Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. appl. Phycol. 6: 391-396.
Google Scholar
Hu Q, Richmond A (1996) Productivity and photosynthetic effi-ciency of Spirulina platensis as affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. J. appl. Phycolo. 8: 139-145
Google Scholar
Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189.
Google Scholar
Kamiya A, Kowallik W(1987) Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiol. 28: 611-619.
Google Scholar
Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. appl. Phycol. 9: 559-563.
Google Scholar
Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferm. Bioengng. 74: 12-20.
Google Scholar
Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 19: 507-509.
Google Scholar
Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of th microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 70: 357-362.
Google Scholar
Kyle DJ, Gladue RM (1991) Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO91/14427, October 3, 1991.
Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend. Trends Biotechnol. 4: 186-189.
Google Scholar
Lee YK (1990) Genetic and technological improvements with respect to mass cultivation of microalgae. In Lee YK, Nga BH, Yeo V (eds), Microbiology Applications in Food Biotechnology. Institute of Standard & Industrial Research, Singapore, pp. 61-73.
Google Scholar
Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J. appl. Phycol. 9: 403-411.
Google Scholar
Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. appl. Phycol. 8: 163-169.
Google Scholar
Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J. appl. Phycol. 7: 47-51.
Google Scholar
Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995-1000.
Google Scholar
Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioengng 40: 1119-1122.
Google Scholar
Lee YK, Richmond A (1998) Bioreactor technology for mass cultivation of photoautotrophic microalgae. In Fingerman M, Nagabhushanam R, Thompson M (eds), Recent Advances in Marine Biotechnology Vol. 2, Environmental Marine Biotechnology. Oxford & IBH, New Delhi, pp. 271-288.
Google Scholar
Lee YK, Zhang DH (1999) Production of astaxanthin by Haematococcus. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Google Scholar
Lewin JC, Lewin RA (1967) Culture and nutrition of some apochlorotic diatoms. J. gen. Microbiol. 11: 361-367.
Google Scholar
Ma X, Chen KW, Lee YK (1997) Growth of Chlorella outdoor in a changing light environment. J appl. Phycol. 9: 425-430.
Google Scholar
Marquez FJ, Nishio N, Nagai S (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164.
Google Scholar
Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengng 76: 408-410.
Google Scholar
Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol. 95: 1150-1155.
Google Scholar
Matsunaga T, Takeyama H, Sudo H, Oyama N, Nriura S, Takano H, Hirano m, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococus sp. using a novel photobioreactor employing light-diffusing optical fibers. Appl. Biochem. Biotechnol. 28/29: 157-167.
Google Scholar
Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. appl. Phycol. 10: 515-525.
Google Scholar
Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for largescale monoculture of microalgae. J. Biotechnol. 70: 249-270.
Google Scholar
Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresenel lenses and transmitted through optical fibers. Bioengng Symp. 15: 331-345.
Google Scholar
Muller-Feuga A, Guedes RL, Herve A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using porphyridium cruentum. J. appl. Phycol. 10: 83-90.
Google Scholar
Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J. appl. Phycol. 9: 503-510.
Google Scholar
Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioengng. 23: 1121-1132.
Google Scholar
Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation. Development of processes for efficienct light utilization in photobioreactors. J. appl. Phycol. 12: 207-218.
Google Scholar
Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. appl. Phycol. 10: 67-74.
Google Scholar
Ogbonna JC, Toshihiko S, Hideo T (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70: 289-297.
Google Scholar
Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54: 451-462.
Google Scholar
Pirt SJ, Lee YK, Richmond A, Pirt Watts M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J. Chem. Technol. Biotechnol. 30: 25-34.
Google Scholar
Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33: 35-58.
Google Scholar
Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 209-218.
Google Scholar
Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Marine Biol. 83: 231-238.
Google Scholar
Pulz O (1994) Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. University of Malaya, Kuala Lumpur, pp. 113-117.
Google Scholar
Richmond A (1986) Handbook of Microalgal Mass Culture. CRC, Boca Raton: 528 pp.
Google Scholar
Richmond A (1996) Efficient utilization of high irradiance for production of photoautotropic cell mass: A survey. J. appl. Phycol. 8: 381-387.
Google Scholar
Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J. appl. Phycol. 12: 441-451.
Google Scholar
Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoor. J. appl. Phycol. 5: 327-332.
Google Scholar
Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. appl. Phycol. 2: 195-206.
Google Scholar
Robinson LF (1987) Improvements relating to biomass production. European Patent 0,239,272.
Running JA, Huss RJ, Olson PT (1994) Heterotrophic production of ascorbic acid by microalgae. J. appl. Phycol. 6: 99-104.
Google Scholar
Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol. Stud. (Trebon) 1: 11.
Google Scholar
Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94: 972-983.
Google Scholar
Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, pp. 97-113.
Google Scholar
Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.
Google Scholar
Tan CK, Johns MR (1991) Fatty acid production by hetrotrophic Chlorella saccharophila. Hydrobiologia 215: 13-19.
Google Scholar
Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric. biol. Chem. 53: 305-312.
Google Scholar
Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61-74.
Google Scholar
Tredici MR, Carlozzi P, Zittelli CG, Materassi R (1991) A vertical aveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Biores.Technol. 38: 153-159.
Google Scholar
Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221-231.
Google Scholar
Tsavalos AJ, Day JG (1994) Development of media for the mixotrophic/ heterotrophic culture of Brachiomonas submarina. J. appl. Phycol. 6: 431-433.
Google Scholar
Valiente EF, Nieva M, Avendano C, Maeso ES (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis. Plant Cell Physiol. 33: 307-313.
Google Scholar
Vonshak A (1997) Outdoor mass production of Spirulina: The basic concept. In Vonshak A (ed.), Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis, London, pp. 79-99.
Google Scholar
Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J. Bact. 70: 175-183.
Google Scholar