Advertisement

Hydrobiologia

, Volume 514, Issue 1–3, pp 139–149 | Cite as

Temporal and spatial patterns of crustacean zooplankton dynamics in a transitional lagoon ecosystem

  • Zita Rasuolė Gasiūnaitė
  • Artūras Razinkovas
Article

Abstract

Patterns and mechanisms of plankton crustacean seasonal succession in the eutrophic freshwater Curonian lagoon (south-eastern Baltic Sea) were analysed on the basis of four-year (1995, 1996, 1998 and 1999) field sampling results. The seasonal crustacean zooplankton succession in the lagoon appears to be the consistent six-stage sequence of four distinct species complexes. Each stage is characterised by its individual species composition and quantitative characteristics. The uniform and periodic pattern of the limnetic zooplankton crustacean successional stages in the lagoon indicates that the seasonal succession of the limnetic zooplankton is not disturbed by unpredictable environmental fluctuations, such as brackish water inflows. Seasonal zooplankton succession is also comparatively uniform at a spatial scale. Not more than two adjacent successional stages were found across the northern part of the lagoon during each of 11 seasonal surveys. Comparison between monthly water residence time and dominant plankton crustacean species life cycle duration points to a more transitory plankton community in spring while in the summer it is not much influenced by lagoon hydrodynamics. Consequently, the Curonian lagoon crustacean community quite closely follows the Plankton Ecology Group (PEG)-described freshwater lake seasonal succession in summer and turns into a lentic-like system in spring and autumn.

zooplankton seasonal dynamics water residence time eutrophic lagoon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbačiauskas, K. & Z. R. Gasiūnaitė, 1996. Growth and development of Daphnia after diapause and their impact on the development of a population. Hydrobiologia 320: 209–222.Google Scholar
  2. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hilbricht-Ilkowska, H. Kurasawa, P. Larsson, & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.Google Scholar
  3. Brooks, J. L. & S. I. Dodson, 1965 Predation, body size and composition of plankton. Science 150: 28–35.Google Scholar
  4. Carpenter, S. R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. American Naturalist, 124: 159–172.Google Scholar
  5. Carpenter, S. R. & J. F. Kitchell (eds), 1996. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge, 385 ppGoogle Scholar
  6. Clarke, K. R. & R. M. Warwick, 1997. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth, 144 pp.Google Scholar
  7. Cloern, J. E., B. E. Cole, R. L. J. Wong & A. E. Apline, 1985. Temporal dynamics of estuarine phytoplankton: a case study of San Francisco bay. Hydrobiologia 129: 153–176.Google Scholar
  8. Day, J. W. Jr., C. A. S. Hall & A. Yanez-Arancibia, 1989. Estuarine Ecology. John Wiley & Sons, New York.Google Scholar
  9. DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer-Verlag, Berlin: 195–252.Google Scholar
  10. Dubra, V., 1996. Kuršių marių nuotėkio į Baltijos jūrų hidrodinaminės charakteristikos [Hydrodynamical features of the Curonian lagoon discharge to the Baltic Sea]. In: Proc. of the First Conference of the Lithuanian Oceanologists. Klaipeda University: 113-120.Google Scholar
  11. Flossner, D., 1972. Krebstiere, Crustacea. Kiemen-und Blattfusser, Brachiopoda. Die Tierwelt Deutschlands, t. 60. Gustav Fisher Verlag, Jena, 485 pp.Google Scholar
  12. Gasiūnaitė, Z. R., 2000. Coupling of the limnetic and brackish-water plankton crustaceans in the Curonian lagoon (Baltic Sea). Int. Rev. Hydrobiol. 5-6: 653–662.Google Scholar
  13. Gasiūnaitė, Z. R. & R. Pilkaitytė, 2001. The investigations of nutrient concentrations and plankton community in the Nemunas Delta and Curonian lagoon. In: Project SPF/99/83 Nemunas Delta cross border protected territory pilot study Interim Report No.1: 25-39Google Scholar
  14. Ghiliarov, A. M., 1987. Dinamicheskye charakteristiki presnovodnych planktonnych rakoobraznych [Density dynamics of freshwater plankton crustaceans]. Moscow, Nauka, 192 pp. (in Russian).Google Scholar
  15. Hawkins, P. & W. Lampert, 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1089.Google Scholar
  16. Jorgensen, S. E., S. N. Nielsen & L. A. Jorgensen, 1995. Handbook of Ecological Parameters and Ecotoxicology, Amsterdam, 1263 pp.Google Scholar
  17. Khmeleva, N. N. & A. P. Golubev, 1984. Produkcyia promyslovych rakoobraznych [Production of the nutritional crustaceans]. Nauka i technika, Minsk, 215 pp. (in Russian).Google Scholar
  18. Kozhova, O. & N. Melnik, 1978. Manual for the Plankton Samples Treatment by Counting. Irkutsk, Moscow, 55 pp.Google Scholar
  19. Laprise, R. & J. J. Dodson, 1993. Nature of environmental variability experienced by benthic and pelagic animals in the St. Lawrence Estuary, Canada. Mar. Ecol. Prog. Ser. 94: 129–139.Google Scholar
  20. Laprise, R. & J. J. Dodson, 1994. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Mar. Ecol. Prog. Ser. 107: 67–81.Google Scholar
  21. Maier, G., 1994. Patterns of life history among cyclopoid copepods of central Europe. Freshwater Biology 31: 77–86.Google Scholar
  22. McLusky, D. S., 1981. The Estuarine Ecosystem. John Wiley and Sons, New York. 150 ppGoogle Scholar
  23. McLusky, D. S., 1993. Marine and estuarine gradients-an overview. Neth. J. Aquat. Ecol. 27: 489–493.Google Scholar
  24. Mortazavi, B., R. L. Iverson, M. Landing, F. G. Lewis & W. Huang, 2000. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA. Mar. Ecol. Prog. Ser. 198: 19–31.Google Scholar
  25. Olenina, I., 1997. Phytoplankton development in the Curonian lagoon and south-eastern Baltic Sea coastal area. Ph.D. Thesis. Inst. Botany, Klaipėda University, 159 pp.Google Scholar
  26. Olenina, I., 1998. Long-term changes in the Kuršių Marios lagoon: eutrophication and phytoplankton response. Ekologija 1: 56–65.Google Scholar
  27. Persson, L., 1999. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85: 385–397.Google Scholar
  28. Pustelnikovas, O., 1998. Geochemistry of sediments of the Curonian lagoon (Baltic Sea).VilniusGoogle Scholar
  29. Rylov, V. M., 1948. Cyclopoida presnych vod. Fauna SSSR. Crustaceans [Cyclopoida of the fresh waters. Fauna SSSR. Crustaceans]. T. 3. Leningrad, 236 pp. (in Russian).Google Scholar
  30. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  31. Tsalolikhin, S. J. (ed.), 1995. Opredelitel presnovodnych bespozvonochnych Rosiji i sopredelnych teritoryj [Key to freshwater invertebrates of Russia and adjacent lands], Vol. 2. Crustaceans, St. Petersburg, 627 pp. (in Russian).Google Scholar
  32. Welker, M. & N. Walz, 1999. Plankton dynamics in a river-lake system-on continuity and discontinuity. Hydrobiologia 408/409: 233–239.Google Scholar
  33. Wetzel, R. G., 1983. Limnology. Saunders College Publishing, New York, 767 pp.Google Scholar
  34. Žaromskis, R., 1996. Oceans, Seas, Estuaries. Vilnius, 293 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Zita Rasuolė Gasiūnaitė
    • 1
  • Artūras Razinkovas
    • 1
  1. 1.Coastal Research and Planning InstituteKlaipėda UniversityKlaipėdaLithuania

Personalised recommendations