Spatial and seasonal variations in size, body volume and body proportion (prosome:urosome ratio) of the copepod Acartia tonsa in a semi-closed ecosystem (Berre lagoon, western Mediterranean)

Abstract

Variations in size (prosome), body volume and proportion (prosome:urosome ratio) of female Acartia tonsa copepods were studied during three different seasons (June, October and November) in a network of 13 stations distributed throughout the Berre Lagoon, near Marseille. Strong morphological differences were found between the populations collected through the different seasonal surveys, but also between the different stations or groups of stations. They were related to the variations of environmental parameters (temperature, salinity, chlorophyll, particulate seston) according to the season and to the location of the stations (submitted to the marine influence in the south and to the intake of fresh water in the north of the lagoon). Considering all seasonal data, the size and body volume were inversely related to temperature. Body volume also showed a negative correlation with chlorophyll and carbon and a positive one with the C:N ratio of particles. The body proportion was positively correlated with temperature, chlorophyll and carbon. For each seasonal survey, the relationship between morphological features and environmental factors did not reach the significant level except in October when body proportion and volume were positively correlated to chlorophyll.Nevertheless, for each season, significant spatial changes in size or body proportion appeared in parts of the population of Acartia tonsa, in relation with local specific conditions of environmental factors, especially chlorophyll. These biometric differences suggest that individuals must develop in situ for at least the final period of larval growth, despite the dispersion effect caused by hydrodynamic movements. This stability in horizontal distribution may result from the diurnal vertical migrations of copepods between the surface and the bottom, two layers displaying currents of opposite directions. These results justify the use of somatic features (size and body proportion) to discriminate sets of individuals belonging to the same population. %

This is a preview of subscription content, access via your institution.

References

  1. Arfi, R., 1989. Annual cycles and budget of nutriments in Berre lagoon (Mediterranean sea, France). Int. Rev. ges. Hydrobiologie 74: 29–49.

    Google Scholar 

  2. Belmonte, G., M. G. Mazzocchi, I. Y. Prusova & N. V. Shadrin, 1994. Acartia tonsa: a species new for the Black Sea fauna. Hydrobiologia 292/293: 9–15.

    Google Scholar 

  3. Berggreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implication for determination of copepod production. Marine Biology 99: 341–350.

    Google Scholar 

  4. Botrell, H. H., A. Duncan, A. Hillbricht-Illkowska, H. Kurasawa, H. Larsson & P.Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  5. Cervetto, G., R. Gaudy, M. Pagano, L. Saint-Jean, G. Verriopoulos, R. Arfi & M. Leveau, 1993. Diel variations in Acartia tonsa feeding respiration and egg production in a Mediterranean coastal lagoon. Journal of Plankton Research 15: 1207–1228.

    Google Scholar 

  6. Christou, E. D. & G. Verriopoulos, 1993. Length, weight and condition factor of Acartia clausi (copepoda) in the eastern Mediterranean. Journal of the marine Biological Association of the United Kingdom 73: 343–353.

    Google Scholar 

  7. Deevey, G. B., 1960. Relative effects of temperature and food on seasonal variation in length of marine copepods in some eastern American and western European waters. Bulletin of the Bingham Oceanographic Collection 17: 54–85.

    Google Scholar 

  8. Deevey, G. B., 1964. Annual variations in length of copepods in the Sargasso sea off Bermuda. Journal of the marine Biological Association of the United Kingdom 44: 589–600.

    Google Scholar 

  9. Deevey, G. B., 1966. Seasonal variations in length of copepods in South Pacific New Zealand waters. Australian Journal of marine and freshwater Research 17: 155–168.

    Google Scholar 

  10. Digby, P. S. B., 1950. The biology of small planktonic copepods off Plymouth. Journal of the marine biological Association of the United Kingdom 19: 393–438.

    Google Scholar 

  11. Durbin, A. G. & E. G. Durbin, 1978. Length and weight relationships of Acartia clausi from Narragansett Bay, Rhode Island. Limnology and Oceanography 28: 1199–1213.

    Google Scholar 

  12. Evans, F., 1981. An investigation in the relationship of sea temperature and food supply to the size of the planktonic copepod Temora longicornis in the North Sea. Estuarine and Coastal Shelf Science 13: 145–158.

    Google Scholar 

  13. Feurtet, A. & J. Castel, 1988. Biologie du copépode Eurytemora affinis hirundoides dans la Gironde: données morphométriques. 1988. In IFREMER (ed.), Aspects Récents de la Biologie des Crustacés. Actes de Colloques Vol. 8: 223–228.

    Google Scholar 

  14. Furlan, L., S. Fonda Umani & M. Specchi, 1983. Some correlations between hydrobiological parameters and the population of Acartia clausi in the Gulf of Trieste. Rapports et Procès-verbaux de la Commission Internationale d'Exploration Scientifique de la Mer Méditerranée 28: 165–167.

    Google Scholar 

  15. Garmew, T. G., S. Hammond, A. Mercantini, J. Morgan, C. Neunert & J. A. Forshell, 1994. Morphological variability of geographically distinct populations of the estuarine copepod Acartia tonsa. Hydrobiologia 292/293: 149–156.

    Google Scholar 

  16. Gaudy, R., 1971. L'allongement antennulaire chez Centropages typicus, signification adaptative et utilité biométrique. Rapports et Procès-verbaux de la Commission Internationale d'Exploration Scientifique de la Mer Méditerranée 20: 363–365.

    Google Scholar 

  17. Gaudy, R., 1989. The role of zooplankton in the nitrogen cycle of a Mediterranean brackish lagoon. Scientia Marina 52: 609–616.

    Google Scholar 

  18. Gaudy, R. & P. Benon, 1977. Impact du rejet thermique sur le zooplancton dans le voisinage de la centrale de Martigues-Ponteau In EDF (ed.), Influence des Rejets Thermiques Sur le Milieu Vivant en Mer et en Estuaire. Direction de l'Equipement, Paris: 161–175.

    Google Scholar 

  19. Gaudy, R. & M. Pagano, 1987. Nutrition chez des copépodes en milieu lagunaire méditerranéen en fonction de la concentration particulaire et de la température. In IFREMER (ed.), Production et Relations Trophiques Dans Les Écosystèmes Marins. 2ème Coll. franco-soviétique, Yalta 1984, Actes Coll. 5: 137–151.

    Google Scholar 

  20. Gaudy, R., M. Moraitou Apostolopoulou, M. Pagano, L. Saint Jean & G. Verriopoulos, 1988. Salinity as a decisive factor in the length of cephalothorax of Acartia clausi from three different areas (Greece and Ivory Coast). Rapports et Procès-verbaux de la Commission Internationale d'Exploration Scientifique de la Mer Méditerranée 31: 233.

    Google Scholar 

  21. Gaudy, R., G. Verriopoulos & G. Cervetto, 1995. Space and time distribution of zooplankton in a Mediterranean lagoon. Hydrobiologia 300/301: 219–236.

    Google Scholar 

  22. Gaudy, R. & M. Viñas, 1985. Le chenal de Caronte, voie de transit pour les faunes pélagiques marines et saumâtres. Rapports et Procès-verbaux de la Commission Internationale d'Exploration Scientifique de la Mer Méditerranée 30: 197.

    Google Scholar 

  23. Klein Breteler, W. C. M. & S. R. Gonzalez, 1982. Influence of cultivation and food concentration on body length of calanoid copepods. Marine Biology 71: 157–161.

    Google Scholar 

  24. Lovegrove, T., 1962. The effect of various factors on dry weight values. Rapp. Proc. Verb. Réun. Comm. Perm. Explor. Mer 153: 86–91.

    Google Scholar 

  25. Marshall, S. M., 1949. On the biology of the small copepods in Loch Striven. Journal of the marine biological Association of the United Kingdom 28: 45–122.

    Google Scholar 

  26. Marshall, S. M., A. G. Nicholls & A. P. Orr, 1934. On the biology of Calanus finmarchicus. V. Seasonal distribution, size, weight and chemical composition in Loch Striven in 1933 and relation to the phytoplankton. Journal of the marine biological Association of the United Kingdom 19: 793–827.

    Google Scholar 

  27. Mauchline, J., 1998. The biology of calanoid copepods. Advances in marine Biology 33: 1–707.

    Google Scholar 

  28. McLaren, I. A., 1965. Some relationships between temperature and egg size, body size, development rate and fecundity of the copepod Pseudocalanus. Limnology and Oceanography 10: 528–538.

    Google Scholar 

  29. Minas, M., 1976. Production organique dans un milieu saumâtre eutrophe (étang de Berre). Effets d'une forte dilution (dérivation des eaux de la Durance). Marine Biology 35:13–29.

    Google Scholar 

  30. Moraitou-Apostolopoulou, M., 1975. Seasonal variations in length of three copepods in Saronic Bay (Greece). Bolletino di Pesca, Piscicicoltura i Idrobiologia 30: 93–101.

    Google Scholar 

  31. Péchon, P. & R. Samie, 1993. Modélisation numérique des courants et de la salinité dans l'étang de Berre. Direction des études et recherches, EDF France: 81 pp.

    Google Scholar 

  32. Pessotti, E., C. Razouls & S. Razouls, 1986. Distribution de taille d'une espèce de copépode en relation avec sa distribution spatiale. In Schriever, G., H. K. Schminke & C. T. Shie (eds), Proceeding of the Second international Conference on Copepoda, Ottawa. Syllogeus 58: 409–419.

  33. Razouls, C. & C. Guiness, 1973. Variations annuelles quantitatives de deux espèces dominantes de copépodes planctoniques Centropages typicus et Temora stylifera de la région de Banyuls. II Variations dimensionnelles et mesures de la croissance. Cahiers de Biologie Marine 14: 413–427.

    Google Scholar 

  34. Sewell, R. B. S., 1947. The free swimming planktonic copepoda. Systematic account. Reports of the John Murray expedition 1933-1934. 8: 1–303.

    Google Scholar 

  35. Tester, P. & J. T. Turner, 1991. Why is Acartia tonsa restricted to estuarine habitat?. Bulletin of the Plankton Society of Japan, Special Volume: 603-611.

  36. Vianello, G., 1968. Ricerche biometriche su due popolazioni di Centropages typicus. Bolletin della Societa Adriatica de Scienze, Trieste 56: 74–89.

    Google Scholar 

  37. Vidal, J., 1980a. Physioecology of zooplankton. III. Effects of phytoplankton concentration, temperature and body size on the metabolic rate of Calanus pacificus. Marine Biology 56: 195–202.

    Google Scholar 

  38. Vidal, J., 1980b. Physioecology of zooplankton. IV. Effects of phytoplankton concentration, temperature and body size on the net production efficiency of Calanus pacificus. Marine Biology 56: 203–211.

    Google Scholar 

  39. Warren, G. J., M. S. Evans, D. J. Jude & J. C. Ayers, 1986. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. Journal of Plankton Research 8: 841–853.

    Google Scholar 

  40. Yentsch, C. S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin. Deep Sea Research 10: 221–231.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaudy, R., Verriopoulos, G. Spatial and seasonal variations in size, body volume and body proportion (prosome:urosome ratio) of the copepod Acartia tonsa in a semi-closed ecosystem (Berre lagoon, western Mediterranean). Hydrobiologia 513, 219–231 (2004). https://doi.org/10.1023/B:hydr.0000018190.34856.d2

Download citation

  • morphology
  • Acartia
  • space and seasonal variations