Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia)

Abstract

The spatial and seasonal distribution of microcrustacean zooplankton of Lake Tana (Ethiopia) was monthly studied for 2 years. Concurrently, various environmental parameters were measured and related to zooplankton distribution. Canonical Correspondence Analysis (CCA) was used to estimate the influence of abiotic factors and chlorophyll a content in structuring the zooplankton assemblage. Among the environmental factors, zooplankton abundance correlated most strongly with turbidity. Turbidity was negatively correlated with species abundance, especially for Daphnia spp. and to the least extent for Diaphanosoma spp. Analysis of variance (ANOVA) was used to determine spatial (littoral, sublittoral and pelagic zone) and temporal (four seasons) variation in zooplankton abundance. We observed significant temporal differences in zooplankton abundance, with highest densities during dry season (November–April). Only cladocerans showed significant differences in habitat use (highest densities in the sublittoral zone). %

This is a preview of subscription content, access via your institution.

References

  1. Aka, M., M. Pagano, L. Saint-Jean, R. Arfi, M. Bouvy, P. Cecchi, D. Corbin & S. Thomas, 2000. Zooplankton variability in 49 shallow tropical reservoirs of Ivory Coast (West Africa). Int. Rev. Hydrobiol. 85: 491–504.

    Google Scholar 

  2. Berry, D. A., 1987. Logarithmic transformations in ANOVA. Biometrics 43: 439–456.

    Google Scholar 

  3. Bertilsson, J., B. Berzins & B. Peljer, 1995. Occurrence of limnetic micro-crustaceans in relation to temperature and oxygen. Hydrobiologia 299: 163–167.

    Google Scholar 

  4. Brunelli, G. & E. G. Cannicci, 1940. Le Caratteristiche Biologiche del Lag Tana. Missione di Studio al Lago Tana richerge limnologiche. Bollettino di Chemica e Biologia, Reale Accademia d'Italia 3: 71–114.

    Google Scholar 

  5. Bruton, M. N., 1985. The effects of suspensoids on fish. Hydrobiologia 125: 221–241.

    Google Scholar 

  6. Charalambidou, I. & L. Santamaría, 2002. Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica 23: 165–176.

    Google Scholar 

  7. Cuker, B. E. & L. Hudson, Jr, 1992. Type of suspended clay influences zooplankton response to phosphorus loading. Limnol. Oceanogr. 37: 566–576.

    Google Scholar 

  8. Defaye, D., 1988. Contribution a la connaissance des Crustaces Copepodes d'Ethiopie. Hydrobiologia 164: 103–147.

    Google Scholar 

  9. de Graaf, M., 2003. Lake Tana's Piscivorous Barbus (Cyprinidae, Ethiopia). Ecology, Evolution and Exploitation. PhD. thesis, Wageningen University, Wageningen, The Netherlands, 249 pp.

    Google Scholar 

  10. Dejen, E., 2003. Ecology and Potential for Fishery of the Small Barbs (Cyprinidae, Teleostei) of Lake Tana (Ethiopia). PhD. thesis, Wageningen University, Wageningen, The Netherlands, 180 pp.

    Google Scholar 

  11. Dejen, E., H. A. Rutjes, M. de Graaf, L. A. J. Nagelkerke, J.W.M. Osse & F. A. Sibbing, 2002. The 'small barbs' Barbus humilis and B. trispilopleura of Lake Tana (Ethiopia): are they ecotypes of the same species? Environ. Biol. Fishes 65: 373–386.

    Google Scholar 

  12. Dejen, E., F. A. Sibbing & J. Vijverberg, 2003. Reproductive strategies of two sympatric 'small barbs' (Barbus humilis and B. tanapelagius, Cyprinidae) in Lake Tana, Ethiopia. Neth. J. Zool. 52: 281–299.

    Google Scholar 

  13. De Meester, L., A. Gomez, B. Okamura & K. Schwenk, 2002. The monopolisation hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.

    Google Scholar 

  14. Dumont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Google Scholar 

  15. Flössner, D., 2000. Daphnia hyalina Leydig 1860. In: Die Haplopoda und Cladocera (Ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden, The Netherlands: 177–182.

    Google Scholar 

  16. Green, A. J., J. Figuerola & M. I. Sánchez, 2002. Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologica 23: 177–189.

    Google Scholar 

  17. Hanazato, T., M. Yasuno & M. Hosomi, 1989. Significance of a low oxygen layer for a Daphnia population in Lake Yunoko, Japan. Hydrobiologia 185: 19–27.

    Google Scholar 

  18. Hart, R. C., 1985. Seasonality of aquatic invertebrates in lowlatitude and Southern Hemisphere inland waters. Hydrobiologia 93: 194–208.

    Google Scholar 

  19. Hart, R. C., 1986. Zooplankton density, community structure and dynamics in relation to inorganic turbidity, and the implications for a potential fishery in subtropical Lake le Roux, South Africa. Freshwat. Biol. 16: 351–371.

    Google Scholar 

  20. Hart, R. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid tropical reservoir. Freshwat. Biol. 19: 123–139.

    Google Scholar 

  21. Hart, R. C., 1990. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications. Freshwat. Biol. 24: 241–263.

    Google Scholar 

  22. Hart, R. C., 1992. Experimental studies of food and suspended sediment effects on growth and reproduction of 6 planktonic cladocerans. J. Plankton Res. 14: 1425–1448.

    Google Scholar 

  23. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, U.K. 299 pp.

    Google Scholar 

  24. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Google Scholar 

  25. Kirk, K. L., 1991. Suspended clay reduces Daphnia feeding rate: behavioural mechanisms. Freshwat. Biol. 25: 357–365.

    Google Scholar 

  26. Koenings, J. P., R. D. Burkett & J. M. Edmundson, 1990. The exclusion of limnetic cladocera from turbid glacier-meltwater lakes. Ecology 71: 57–67.

    Google Scholar 

  27. Korinek, V., 1999. A guide to limnetic species of Cladocera of African inland waters (Crustacea, Branchiopoda). Occasional Publication No. 1. The International Association of Theoretical and Applied Liminology, BTL, Geneva. 51 pp.

    Google Scholar 

  28. Lind, O. T., R. Doyle, D. S. Vodopich, B. G. Trotter, J. G. Limon & L. Davalos-Lind, 1992. Clay turbidy: Regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr. 37: 549–565.

    Google Scholar 

  29. Marshall, B. E., 1997. A review of zooplankton ecology in Lake Kariba. In Moreau, J. (ed.), Advances in the Ecology of Lake Kariba. Publ. University of Zimbabwe, Harare, Zimbabwe: 102–119.

    Google Scholar 

  30. McCabe, G. D. & W. J. O'Brien, 1983. The effect of suspended silt on the feeding and reproduction of Daphnia pulex. Am. midl. Nat. 110: 324–337.

    Google Scholar 

  31. Mengistu, S. & C. H. Fernando, 1991. Seasonality and abundance of some dominant crustacean zooplankton in Lake Awassa, a tropical rift valley lake in Ethiopia. Hydrobiologia 226: 137–152.

    Google Scholar 

  32. Nagelkerke, L. A. J., F. A. Sibbing, J. G. M. van den Boogaart, E. H. R. R. Lammens & J. W. M. Osse. 1994. The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Environ. Biol. Fishes 35: 1–22.

    Google Scholar 

  33. Nagelkerke, L. A. J., 1997. The barbs of Lake Tana, Ethiopia-morphological diversity and its implication for taxonomy, trophic resource partitioning, and fisheries. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands. 296 pp.

    Google Scholar 

  34. Post, D. M. & J. F. Kitchell, 1997. Trophic ontogeny and life history effects on interactions between age-0 fish and zooplankton. Archiv für Hydrobiol. Special Issues Adv. Limnol. 49: 1–12.

    Google Scholar 

  35. Rohlf, F. J., 1993. NTSYS-pc. Numerical taxonomy and multivariate system, version. Setauket, New York: Exeter Software, Applied Biostatistics Inc.

    Google Scholar 

  36. Rzóska, J., 1976. Lake Tana, headwater of the Blue Nile. In Rzóska, J. (ed.), The Nile, Biology of Ancient River. Dr W. Junk Publishers, The Hague, The Netherlands: 223–232.

    Google Scholar 

  37. Schwenk, K., D. Posada & P. D. N. Hebert, 2000. Molecular systematics of European Hyalodaphnia: the role of contemporary hybridisation in ancient species. Proc. r. Soc. Lond. Ser. B-Biol. Sci. 267: 1833–1842.

    Google Scholar 

  38. Serruya, C. & U. Pollingher, 1983. Lakes of the Warm Belt. Cambridge University Press, Cambridge, U.K. 569 pp.

    Google Scholar 

  39. Smirnov, N. N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of Continental Waters of the World. SPB Academic Publishing, Amsterdam. 197 pp.

    Google Scholar 

  40. Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. Proceedings, Conference on primary productivity measurement, marine and freshwater. US Atomic Energy Committee, TID-7633: 142-146.

  41. Tekalign, M., A. Astatke, K. L. Srivastava & A. Dibabe (eds), 1993. Improved Management of Vertisols for Sustainable Crop-Livestock Production in the Ethiopian Highlands. Synthesis Report 1986-1992. Technical Committee of the Joint Vertisol Project, Addis Ababa, Ethiopia. 199 pp.

    Google Scholar 

  42. Teshale, B., R. Lee & G. Zawdie, 2001. Development initiatives and challenges for sustainable resource management and livelihood in the Lake Tana region of Northern Ethiopia. In Dixon, A. B., A. Hailu & A. P. Wood (eds), Proceedings of the Wetland Awareness Creation and Activity Identification Workshop in Amhara National Regional State. January 23rd 2001 Bahar Dar, Ethiopia: 33-43.

  43. ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO reference manual and user's guide to Canoco for windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, New York, U.S.A.: 351 pp.

    Google Scholar 

  44. Threlkeld, S. T., 1986. Life table responses and population dynamics of four cladoceran zooplankton during a reservoir flood. J. Plankton Res. 8: 639–647.

    Google Scholar 

  45. Van de Velde, I., 1984. Revision of the African species of the genus Mesocyclops Sars, 1914 (Copepoda; Cyclopidae). Hydrobiologia 109: 3–66.

    Google Scholar 

  46. Vinyard, G. L. & W. J. O'Brien. 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus).). Can. J. Fish. aquat. Sci. 33: 2845–2849.

    Google Scholar 

  47. Wudneh, T., 1998. Biology and Management of Fish Stocks in Bahar Dar Gulf, Lake Tana, Ethiopia. PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. 143 pp.

    Google Scholar 

  48. Zurek, R., 1982. Effect of suspended materials on zooplankton. 2. Laboratory investigations of Daphnia hyalina Leydig. Acta Hydrobiol. 24: 233–251.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacobus Vijverberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dejen, E., Vijverberg, J., Nagelkerke, L.A. et al. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513, 39–49 (2004). https://doi.org/10.1023/B:hydr.0000018163.60503.b8

Download citation

  • tropical limnology
  • high altitude lakes
  • Africa
  • copepods
  • cladocerans
  • silt load