, Volume 513, Issue 1–3, pp 27–38 | Cite as

Response of phytoplankton communities to salinity changes – a mesocosm approach

  • Renata Pilkaitytë
  • Arne Schoor
  • Hendrik Schubert


The response of natural phytoplankton communities, originating from oligohaline brackish water systems, to salinity changes (3–12 PSU) has been studied in small-scale mesocosms. Simultaneously, their reaction on iron manipulations was tested. The experiments, each lasting 7 days, were repeated three times at different dates. Treatments were evaluated with respect to biomass development (Chl a concentration), photosynthesis behaviour, and rough taxonomic composition. The investigated phytoplankton communities were dominated by cyanobacteria. Salt addition was not effective for overall phytoplankton biomass development. Filamentous cyanobacteria, however, were promoted by NaCl enrichments. Dark yield and non-photochemical quenching of fluorescence (NPQ) analyses revealed differences for treatments in dependence on iron supplements. Iron partially seemed to dampen the effects of salt shocks, and iron addition reduced both, capacity and irradiance dependency of NPQ, irrespective of the NaCl treatment.

phytoplankton salinity iron photosynthesis mesocosm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldridge, F. J., C. L. Schelske & H. J. Carrick, 1993. Nutrient limitation in a hypereutrophic Florida lake. Archiv für Hydrobiol. 127: 21–37.Google Scholar
  2. Beardall, J., E. Young & S. Roberts, 2001. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 63: 44–69.Google Scholar
  3. Braarud, T., K. R. Gaarder & J. Grøntved, 1953. The phytoplankton of the North Sea and adjacent waters in May 1948. Rapports et Procès-Verbaux des Réunions Conseil Permanent International pour l' Exploration de la Mer 133: 1–87.Google Scholar
  4. Brand, L. E., 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuar. coast shelf Sci. 18: 543–556.Google Scholar
  5. Buma, A. G. J., H. J. W. Baar, R. F. Nolting & A. J. Bennekom, 1991. Metal enrichment experiments in theWeddell-Scotia Seas: Effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36: 1865–1878.Google Scholar
  6. Campbell, D. & G. Öquist., 1996. Predicting light acclimation in cyanobacteria from nonphotochemical quenching of Photosystem II fluorescence, which reflects state transitions in these organisms. Plant Physiol. 111: 1293–1298.Google Scholar
  7. Canini, A. P. Albertano & M. Grilli Caiola, 1998. Localization of Fe-containing superoxide dismutase in cyanobacteria from the Baltic Sea: depth and light dependency. New Phytol. 139: 247–254.Google Scholar
  8. Caraco, N., A. Tamse, O. Boustros & I. Valiela, 1987. Nutrient limitation of phytoplankton growth in brackish coastal ponds. Can. J. Fish. aquat. Sci. 44: 473–476.Google Scholar
  9. Cloern, J. E., 1999. The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat. Ecol. 33: 3–16.Google Scholar
  10. Cota, G. F. & E. P. W. Horne, 1989. Physical control of Arctic ice algal production. Mar. Ecol. Prog. Ser. 52: 111–121.Google Scholar
  11. Cottingham, K. L., S. R. Carpenter & A. L. St. Amand, 1998. Responses of epilimnetic phytoplankton to experimental nutrient enrichment in three small seepage lakes. J. Pankton Res. 20: 1889–1914.Google Scholar
  12. DiTullio, G. R., D. A. Hutchins & K. W. Bruland, 1993. Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. Oceanogr. 38: 495–508.Google Scholar
  13. Escaravage, V., L. Peperzak, T. C. Prins, J. C. H. Peeters & J. C. A. Joordens, 1995. The development of a Phaeocystisbloom in a mesocosm experiment in relation to nutrients, irradiance and coexisting algae. Ophelia 42: 55–74.Google Scholar
  14. Falkowski, P. G., R. M. Greene & R. J. Geider, 1992. Physiological limitations on phytoplankton productivity in the ocean. Oceanography 5: 84–91.Google Scholar
  15. Fisher, T. R., E. R. Peele, J. W. Ammerman & L.W. Harding, 1992. Nutrient limitation of phytoplankton in Chesapeake bay. Mar. Ecol. Prog. Ser. 82: 51–63.Google Scholar
  16. Franklin, L. A., G. G. R. Seaton, C. E. Lovelock & A. W. D. Larkum, 1996. Photoinhibition of photosynthesis on a tropical reef. Plant Cell Environ. 19: 825–836.Google Scholar
  17. Franklin, L. A. & R. M. Forster, 1997. The changing irradiance environment-consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207–232.Google Scholar
  18. Fulda, S. & M. Hagemann, 1995. Salt treatment induces accumulation of flavodoxin in the cyanobacterium Synechocystis sp. PCC 6803. J. Plant Physiol. 146: 520–526.Google Scholar
  19. Fulda, S., J. Huckauf, A. Schoor & M. Hagemann, 1999. Analysis of stress responses in the cyanobacterial strains Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, and Synechococcus sp. PCC 7418: Osmolyte accumulation and stress protein synthesis. J. Plant Physiol. 154: 240–249.Google Scholar
  20. Geider, R. J. & J. LaRoche, 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth. Res. 39: 275–301.Google Scholar
  21. Geiß U., J. Vinnemeier, A. Kunert, I. Lindner, B. Gemmer, M. Lorenz, M. Hagemann & A. Schoor, 2001. Detection of the isiA gene across cyanobacterial strains: Potential for probing iron deficiency. Appl. Environ. Microbiol. 67: 5247–5253.Google Scholar
  22. Genty, B., J. M. Briantais & N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92.Google Scholar
  23. Grøntved, J., 1952. Investigations on the phytoplankton in the southern North Sea in May 1947. Meddelelser fra Kommissionen for Danmarks Fiskeri-og Havundersøgelser, Serie Plankton 5: 1–49.Google Scholar
  24. Hagemann, M., N. Erdmann & U. Schiewer, 1989. Salt adaption of the cyanobacteria Microcystis firma and Synechocystis aquatilis in turbidostat cultures. 1. Steady state values. Archiv für Hydrobiol. Supp. 82: 425–535.Google Scholar
  25. Hagemann, M., R. Jeanjean, S. Fulda, M. Havaux, F. Joset & N. Erdmann, 1999. Flavodoxin accumulation contributes to enhanced cyclic electron flow around Photosystem I in salt-stressed cells of Synechocystis sp. strain PCC 6803. Physiol. Plant. 105: 670–678.Google Scholar
  26. Heiskanen, A.-S., T. Tamminen & K. Gundersen, 1996. Impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea. Mar. Ecol. Prog. Ser. 145: 195–208Google Scholar
  27. HELCOM, 1988. Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinants. Baltic Sea Environment Proceedings. Helsinki 27D: 23–87.Google Scholar
  28. Henley, W. J., 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29: 729–739.Google Scholar
  29. Herbert, S. K., G. Samson, D. C. Fork & D. E. Laudenbach, 1992. Characterization of damage to Photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc. Nat. Acad. Sci. U.S.A. 89: 8716–8720Google Scholar
  30. Hoffmann, T., A. Schutz, M. Brosius, A. Volker, U. Volker & E. Bremer, 2002. High-salinity-induced iron limitation in Bacillus subtilis. J. Bacteriol. 184: 718–727.Google Scholar
  31. Ibelings, B. W., B. M. A. Kroon & L. R. Mur. 1994. Acclimation of photosystem-II in a cyanobacterium and a eukaryotic greenalga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced bymixing in lakes. New Phytol. 128: 407–424.Google Scholar
  32. Jeanjean, R., H. C. P. Matthijs, B. Onana, M. Havaux & F. Joset, 1993. Exposure of the cyanobacterium Synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol. 34: 1073–1079.Google Scholar
  33. Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food-chains. Hydrobiologia 229: 73–91.Google Scholar
  34. Joset, F., R. Jeanjean & M. Hagemann, 1996. Dynamics of the respons of cyanobacteria to salt stress-deciphering the molecular events. Physiol. Plant. 96: 738–744.Google Scholar
  35. Knowlton, M. F. & J. R. Jones, 1996.Experimental evidence of light and nutrient limitation of algal growth in a turbid midwest reservoir. Archiv für Hydrobiol. 135: 321–335.Google Scholar
  36. Krause, G. H., C. Vernotte & J. M. Briantais, 1982. Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim. Biophysica Acta 679: 116–24.Google Scholar
  37. Kroon, B. M. A., M. Latasa, B. W. Ibelings & L. R. Mur, 1992a. The effect of dynamic light regimes on Chlorella. 1. Pigments and cross sections. Hydrobiologia 238: 71–78.Google Scholar
  38. Kroon, B. M. A., T. Burger Wiersma, P. M. Visser & L. R. Mur, 1992b. The effect of dynamic light regimes on Chlorella. 2. Minimum quantum requirement and photosynthesis-irradiance parameters. Hydrobiologia 238: 79–88.Google Scholar
  39. Liu, X. W. & F. J. Millero, 1999. The solubility of iron hydroxide in sodium chloride solutions. Geochim. Cosmochim. Acta 63: 3487–3497.Google Scholar
  40. Liu, X. W. & F. J. Millero, 2002. The solubility of iron in seawater. Mar. Chem. 77: 43–54.Google Scholar
  41. Martin, J. H., R. M. Gordon, S. Fitzwater & W. W. Broenkow, 1989. VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res. I 36: 649–680.Google Scholar
  42. Matthijs, H. C. P., H. Balke, U. M. van Hes, B. M. A. Kroon, L. R. Mur & R. A. Binot, 1996. Application of light-emitting-diodes in bioreactors-flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol. and Bioengeneer. 50: 98–107.Google Scholar
  43. Millward, G. E. & A. Turner, 1995. Trace metals in estuaries. In: Salbu, B. & E. Steinnes (eds), Trace Elements in Natural Waters. CRC Press, Boca Raton: 223–245.Google Scholar
  44. Moisander, P. H., E. McClinton III & H. W. Paerl, 2002. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecol. 43: 432–442.Google Scholar
  45. Petersen, J. E., C.-C. Chen & W. M. Kemp, 1997. Scaling aquatic primary productivity: experiments under nutrient-and lightlimited conditions. Ecology 78: 2326–2338.Google Scholar
  46. Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384–94.Google Scholar
  47. Reed, R. H. & W. D. P. Stewart, 1988. The response of cyanobacteria to salt stress. In: Rogers L. J. & J. R. Gallon (eds), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford: 217–231.Google Scholar
  48. Sagert, S., R. M. Forster, P. Feuerpfeil & H. Schubert, 1997. Daily course of photosynthesis and photoinhibition in Chondrus crispus (Rhodophyta) from different shore levels. Eur. J. Phycol. 32: 363–371.Google Scholar
  49. Sagert, S. & H. Schubert, 2000. Acclimation of Palmaria palmata (Rhodophyta) to light intensity: comparison between artificial and natural light fields. J. Phycol. 36: 1119–1128.Google Scholar
  50. Schiewer, U., 1997. Design, experiences and selected results of meso-and microcosm experiments in shallow coastal waters 1981/95. Rostocker Meeresbiologische Beiträge 5: 9–35.Google Scholar
  51. Schiewer, U., 1998. Hypertrophy of a Baltic estuary-changes in structure and function of the planktonic community. Verh. Int. Ver. Theor. Angewan. Limnol. 26: 1503–1507.Google Scholar
  52. Schlungbaum, G., H. Baudler & G. Nausch, 1994. Die Darss-Zingster Boddenkette-ein typisches Flachwasserästuar an der südlichen Ostseeküste. Rostocker Meeresbiologische Beiträge 2: 5–26.Google Scholar
  53. Schubert, H. & R. M. Forster, 1997. Sources of variability in the factors used for modelling primary productivity in eutrophic waters. Hydrobiologia 349: 75–85.Google Scholar
  54. Schubert, H., S. Fulda & M. Hagemann, 1993. Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6803. J. Plant Physiol. 142: 291–295.Google Scholar
  55. Schubert, H., S. Sagert & R. M. Forster, 2001. Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Mar. Res. 55: 12–22Google Scholar
  56. Sommer, U., 1994. The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol. Oceanogr. 39: 1680–1688.Google Scholar
  57. Sundberg, B., D. Campbell & K. Palmqvist, 1997. Predicting CO2 gain and photosynthetic light acclimation from fluorescence yield and quenching in cyano-lichens. Planta 201: 138–145.Google Scholar
  58. Tadros M. G., W. Smith & B. Joseph, 1995. Yield and quality of cyanobacteria Spirulina maxima in continuous culture in response to sodium chloride. Appl. Biochem. Biotechnol. 51/52: 275–281.Google Scholar
  59. VanLiere, L. & L. R. Mur, 1978. Light limited cultures of the bluegreen alga Oscillatoria agardhii. Mitt. int. Ver. Theor. Angewan. Limnol. 21: 158–167.Google Scholar
  60. Vinnemeier, J., A. Kunert & M. Hagemann, 1998. Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 169: 323–330.Google Scholar
  61. Wasmund, N. & V. Kell, 1991. Characterization of brackish water coastal waters of different trophic levels bymeans of phytoplankton biomass and primary production. Int. Rev. ges. Hydrobiol. 76: 361–370.Google Scholar
  62. Webb, W. L., M. Newton & D. Starr, 1974. Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17: 281–291.Google Scholar
  63. Wells, M. L., 1989. The availability of iron in seawater: a perspective. Biol. Oceanogr. 6: 463–476.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Renata Pilkaitytë
    • 1
  • Arne Schoor
    • 2
  • Hendrik Schubert
    • 2
  1. 1.Coastal Research and Planning InstituteKlaipėda UniversityKlaipėdaLithuania
  2. 2.Institute of Aquatic EcologyUniversity of RostockRostockGermany

Personalised recommendations