Armentano, T.V. and Menges, E.S. 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J. Ecol. 74: 755–774.
Google Scholar
Aurela, M., Tuovinen, J.-P. and Laurila, T. 1998. Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. J. Geophys. Res. 103(D10): 11289–11301.
Google Scholar
Barr, A.G., King, K.M., Gillespie, T.J., den Hartog, G. and Neumann, H.H. 1994. A Comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Boundary-Layer Meteor. 71: 21–41.
Google Scholar
Blanford, J.H. and Gay, L.W. 1992. Tests of a robust eddy correlation system for sensible heat flux. Theor. Appl. Clim. 46: 53–60.
Google Scholar
Blanken, P.D., Black, T.A., Yang, P.C., Newmann, H.H., Nesic, Z., Staebler, R., denHartog, G., Novak, M.D. and Lee, X. 1997. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res. 102(D4): 28915–28928.
Google Scholar
Bubier, J.L., Crill, P.M., Moore, T.R., Savage, K. and Varner, R.K. 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochem. Cycles 12(4): 703–714.
Google Scholar
Campeau, S. and Rochefort, L. 1996. Sphagnum regeneration on bare peat surface: field and greenhouse experiments. J. Appl. Ecol. 33: 599–608.
Google Scholar
Davidson, E.A., Verchot, L.V., Cattanio, J.H., Ackerman, I.L. and Carvalho, J.E.M. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48: 53–69.
Google Scholar
Doran, J.W., Mielke, I.N. and Power, J.F. 1991. Microbial activity as regulated by soil water-filled pore space. In: Ecology fo Soil Microorganisms in the Microhabital Environments, Transactions of the 14th International Congress of Soil Sciences Symposium III-3: pp. 94–99.
Environment Canada. 1993. Canadian Climate Normals, 1961– 1990. Québec. Atmospheric Environment Service, Canadian Climate Program, Environment Canada, Ottawa, Canada
Google Scholar
Ferland, C. and Rochefort, L. 1997. Restoration techniques for Sphagnum-dominated peatlands. Can. J. Botany 75(7): 1110–1118.
Google Scholar
Frolking, S.E., Bubier, J.L., Moore, T.R., Ball, T., Bellisario, L.M., Bhardwaj, A. et al. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochem. Cycles 12(1): 115–126.
Google Scholar
Gerdol, R. 1995. The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. J. Ecol. 83: 431–437.
Google Scholar
Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1(2): 182–195.
Google Scholar
Griffis, T.J., Rouse, W.R. and Waddington, J.M. 2000. Scaling net ecosystem CO2 exchange from the community to landscapelevel at a subarctic fen. Global Change Biol. 6: 459–473.
Google Scholar
Ingram, H.A.P. 1978. Soil layers in mires: Function and terminology. J. Soil Sci. 29: 224–227.
Google Scholar
Keys, D. 1992. Canadian Peat Harvesting and the Environment. North American Wetlands Conservation Council Report No. 1992–93, Ottawa, Canada.
Kirschbaum, M.U.F. 1995. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biol. & Biochem. 27(6): 753–760.
Google Scholar
Lambers, H., Chapin, F.S. and Pons, T.L. 1998. Plant Physiological Ecology. Springer, New York, New York.
Google Scholar
Lavoie, C. and Rochefort, L. 1996. The natural revegetation of a harvested peatland in southern Québec: a spatial and dendroecological analysis. Ecoscience 3: 101–111.
Google Scholar
Leuning, R. and Judd, M.J. 1996. The relative merits of open-and closed-path analyzers for measurement of eddy fluxes. Global Change Biol. 2: 241–253.
Google Scholar
LI-COR, Inc. 2000. LI-7500 CO2/H2O Analyzer Instruction Manual. LI-COR, Inc., Lincoln, Nebraska.
Google Scholar
Linn, D.M. and Doran, J.W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Amer. J. 48: 1267–1272.
Google Scholar
Lloyd, C.R. 2001. The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Global Change Biol. 7: 405–426.
Google Scholar
Mathes, K. and Shriefer, T. 1985. Soil respiration during secondary succession: influence of temperature and moisture. Soil Biol. & Biochem. 17(2): 205–211.
Google Scholar
Novak, M.D., Chen, W., Orchansky, A.L. and Ketler, R. 2000a. Turbulent exchange processes within and above a straw mulch. Part 1: mean wind speed and turbulent statistics. Agric. Forest Meteor. 102: 139–154.
Google Scholar
Novak, M.D., Chen, W., Orchansky, A.L. and Ketler, R. 2000b. Turbulent exchange processes within and above a straw mulch. Part 2: thermal and moisture regimes. Agric. Forest Meteor. 102: 155–171.
Google Scholar
Oechel, W.C. and Collins, N.J. 1976. Comparative CO2 exchange patterns in mosses from two tundra habitats at Barrow, Alaska. Can. J. Bot. 54: 1355–1369.
Google Scholar
Orchard, V.A. and Cook, F. 1983. Relationship between soil respiration and soil moisture. Soil Biol. & Biochem. 15: 447–453.
Google Scholar
Petrone, R.M., Waddington, J.M. and Price, J.S. 2001. Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol. Proc. 15: 2839–2845.
Google Scholar
Petrone, R.M., Price, J.S. and Waddington, J.M. In Prep. The Microclimate of a Restored Vacuum Harvested Peatland: The Effects of a Surface Mulch Cover on the Moisture and Thermal Dynamics of a Peat Soil. Target J. – J. Geophys. Res.
Price, J.S. 1996. Hydrology and microclimate of a partly restored cutover bog, Québec. Hydrol. Proc. 10: 1263–1272.
Google Scholar
Price, J.S. 1997. Soil moisture, water tension and water table relationships in a managed cutover bog. J. Hydrol. 202: 21–32.
Google Scholar
Price, J.S. and Waddington, J.M. 2000. Advances in Canadian wetland hydrology and biogeochemistry. Hydrol. Proc. 14: 1579–1589.
Google Scholar
Price, J.S., Rochefort, L. and Quinty, F. 1998. Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover and Sphagnum regeneration. Ecol. Enging. 10: 293– 312.
Google Scholar
Rochefort, L. 2000. Sphagnum – A keystone genus in habitat restoration. The Bryologist 103: 503–508.
Google Scholar
Rochefort, L. and Vitt, D.H. 1988. Effects of simulated acid rain on Tomenthypnum nitens and Scorpidium scorpioides in a rich fen. The Bryologist 91: 121–129.
Google Scholar
Rodriguez-Iturbe, I. 2000. Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Res. Res. 36(1): 3–9.
Google Scholar
Schlotzhauer, S. and Price, J.S. 1999. Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations. Water Resources Res. 35: 3675–3684.
Google Scholar
Shaver, G.R., Johnson, L.C., Cades, D.H. et al. 1998. Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature and light. Ecol. Monogr. 68(1): 75–97.
Google Scholar
Shaver, G.R., Chapin, F.S. and Garter, B.L. 1986. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J. Ecol. 74: 257–258.
Google Scholar
Silvola, J., Alm, J., Ahlholm, U., Nykänen, H. and Martikainen, P.J. 1996. Fluxes from peat in boreal mires under varying temperature and moisture conditions. J. Ecol. 84(2): 219–228.
Google Scholar
Stewart, J.B. and Verma, S.B. 1992. Comparison of surface fluxes and conductances at two contrasting sites within the FIFE area. J. Geophys. Res. 97(D17): 18623–18638.
Google Scholar
Sveinbjornsson, B. and Oechel, W.C. 1983. The effect of temperature preconditioning on the temperature sensitivity of net CO2 flux in geographically diverse populations of the moss Polytrichum Commune. Ecology 64(5): 1100–1108.
Google Scholar
Tuittila, E-S., Komulainen, V.M., Vasander, H. and Laine, J. 1999. Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120: 563–574.
Google Scholar
Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P.J. and Wesely, M.L. 2000. Correcting eddy-covariance flux underestimates over a grassland. Agric. Forest Meteor. 103: 279–300.
Google Scholar
Updegraff, K., Bridgham, S.D., Pastor, J. and Weishampel, P. 1998. Hysteresis in the temperature response of carbon dioxide and methane production in peat soils. Biogeochemistry 43: 253–272.
Google Scholar
Van Seters, T.E. and Price, J.S. 2001. The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Québec. Hydrol. Proc. 15: 233–248.
Google Scholar
Waddington, J.M. and Price, J.S. 2000. Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys. Geogr. 21(5): 433–451.
Google Scholar
Waddington, J.M., Griffis, T.J. and Rouse, W.R. 1998. Northern Canadian wetlands: net ecosystem CO2 exchange and climatic change. Clim. Change 40: 267–275.
Google Scholar
Waddington, J.M., Warner, K.D. and Kennedy, G.K. 2001. Cutover peatlands: A persistent source of atmospheric CO2. Global Biogeochem. Cycles, in press.
Waddington, J.M., Rochefort, L. and Campeau, S. Submitted. Sphagnum production and decomposition in restored peatlands. Wetl. Ecol. Manag.
Webb, E.K., Pearman, G.I. and Leuning, R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Meteor. Soc. 106: 85–100.
Google Scholar
Yavitt, J.B., Lang, G.E. and Wieder, R.K. 1987. Control of carbon mineralization to CH4and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog,West Virginia. Biogeochemistry 4: 141–157.
Google Scholar