Skip to main content
Log in

Biodegradation of Monoethanolamine, Ethylene Glycol and Triethylene Glycol in Laboratory Bioreactors

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The release of alkanolamines and glycols into the subsurface soils poses a potential hazard to the environment through impacted soil and groundwater. This study investigated aerobic and anaerobic biodegradability of monoethanolamine (MEA), ethylene glycol (MEG) and triethylene glycol (TEG). Significant levels of MEA (31 000 mg/kg), MEG (500 mg/kg) and TEG (2100 mg/kg) were successfully aerobically biodegraded in bioreactors. The aerobic slurry experiments suggested initial phosphate (P) limitation, as biodegradation rates increased by one order of magnitude after phosphate addition. Anaerobic decay of MEA, MEG and TEG was unaffected by P-addition. MEA, MEG and TEG degradation products such as acetate, ethanol and ammonium at about 75 000 mg/kg, 8100 mg/kg and 8800 mg/kg degraded completely and did not prevent aerobic biodegradation. This study confirms proposed biodegradation pathways of MEA, MEG, TEG and their breakdown products in natural soil and groundwater using indigenous microbes. Levels of contamination studied here are significantly higher than previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.: 1999, Biodegradation and Bioremediation, 2nd edn., Academic Press, San Diego, CA.

    Google Scholar 

  • Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. and Srinath, E. G.: 1976, ‘Inhibition of nitrification by ammonia and nitrous acid’, J. WPCF. 48, 835–850.

    Google Scholar 

  • Bradbeer, C.: 1965, ‘The Clostridial Fermentation of Choline and Ethanolamine I’, J. Biol. Chem. 240, 4669–4674.

    PubMed  Google Scholar 

  • Brock, T. D. and Madigan, M. T.: 1991, Biology of Microorganisms, 6th edn., Prentice Hall, New Jersey.

    Google Scholar 

  • Bollmeier, A. F.: 1991, Alkanolamines, 4th edn., John Wiley and Sons, New York.

    Google Scholar 

  • BUA: 1994, Beratergremium fuer Umweltrelevante Altstoffe, Ethylene glycol, S.Hirzel Wissenschaftliche Verlagsgesellschaft Stuttgart, Germany.

    Google Scholar 

  • Canter, L.W.: 1997, Nitrate in Groundwater, CRC Lewis Publishers, New York.

    Google Scholar 

  • Dow Chemical Company: 1980, The Alkanolamine Handbook, The Dow Chemical Company, USA.

    Google Scholar 

  • Fedorak, P. M., Coy, D. L., Gieg, L. M., Greene, E. A., Luther, S. M. and Dudas, M. J.: 1997, ‘Assessing the fate of diisopropanolamine and sulfolane in the subsurface at sour gas processing plant sites’, 6th Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Quebec, Canada, 18–21 March 1997.

  • Gallagher, J. R., Sorensen, J. A., Philbrick, S. S., Knutson, R. Z. and Chollak, D.: 1995, ‘Biodegradation of amine wastes from gas-sweetening operations’, Biol. Treat. Wastewater 5, 269–274.

    Google Scholar 

  • Gallert, C., Bauer, S. and Winter, A.: 1998, ‘Effects of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population’, J. Appl. Microbiol. Biotechnol. 50, 495–501.

    Google Scholar 

  • Gottschalk, G.: 1985, Bacterial Metabolism, 2nd edn., Springer, Berlin, Germany.

    Google Scholar 

  • Jones, A. and Turner, J. M.: 1973, ‘Microbial metabolism of amino alcohols’, Biochem. J. 134, 167–182.

    PubMed  Google Scholar 

  • Larsen, R. K., Steinbacher, J. C. and Baker, J. E.: 2001, ‘Ammonia exchange between the atmosphere and the surface waters of two locations in the chesapeake Bay’, Environ. Sci. Technol. 35, 4731–4738.

    PubMed  Google Scholar 

  • Lintott, D. R., Goudey, J. S., Wilson, J. Swanson, S. and Drury, C.: 1997, ‘The toxicity of sulfolane and DIPA from sour gas plants to aquatic species’, 6th Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Quebec, Canada, 18–21 March.

  • Lumbanraja, J.and Evangelou, V. P.: 1990, ‘Binary and ternary exchange behavior of potassium and ammonium on kentucky subsoils’, Soil Sci. Soc. Am. J. 54, 698–705.

    Google Scholar 

  • Mawson, A. J., Earle, R. L. and Larsen, V. F.: 1991, ‘Degradation of acetic acid and propionic acids in the methane fermentation’, Water Res. 25, 1549–1554.

    Google Scholar 

  • McVicker, L., Duffy, D. and Stout, V.: 1997, ‘Microbial growth in a steady-state model of ethylene glycol-contaminated soil’, Curr. Microbiol. 36, 137–147.

    Google Scholar 

  • Mrklas, O., Lunn, S. R. D. and Chu, A.: 2001, ‘Laboratory investigations of aerobic and anaerobic monoethanolamine biodegradation’, in Proceedings of the 54th CGS-IAH Conference, Calgary, Alberta, Canada, September 2001.

  • Mrklas, O., Chu, A. and Lunn, S. D. R.: 2003, ‘Determination of ethanolamine, ethylene glycol and triethylene glycol by Ion chromatography for laboratory and field biodegradation studies’, J. Environ. Monit. 5, 336–340.

    PubMed  Google Scholar 

  • Mrklas, O.: 2002, ‘Ethanolamine and glycol biodegradation: From detection to remediation’, Ph.D Dissertation, Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Nielsen, P. H., Bjerg, P. L., Nielsen, P., Smith, P. and Christensen, T. H.: 1996, ‘In-situ and laboratory determined first-order degradation rate constants of specific compounds in an aerobic aquifer’, Environ. Sci. Technol. 30, 31–37.

    Article  Google Scholar 

  • Olsen, T., Moldrup, P. and Gamst, J.: 1999, ‘Solute diffusion and adsorption in six soils along a soil texture gradient’, Soil Sci. Soc. Am. J. 63, 519–524.

    Google Scholar 

  • Philip, H. H.: 1991, Handbook of Environmental Degradation Rates, 2nd edn., Lewis Publishers, Inc., Chelsea, MI.

    Google Scholar 

  • Polasek, J. C., Iglesias-Silva, G. A. and Bullin, J. A.: 1992 ‘Using mixed amine solutions for gas sweetening’, in Proceedings of the 71st GPA Annual Convention, Tulsa, OK, Gas Processing Association, pp. 58–63.

  • Rooney, P. C., Dupart, M. S. and Bacon, T. R.: 1998, ‘Oxygens role in alkanolamine degradation’, Hydrocarbon Process. 77, 109–113.

    Google Scholar 

  • Sorensen, J. A., Gallagher, J. R., Chollak, D. and Harju, J. A.: 1999, ‘Remediation strategies for soils contaminated with amine-based gas sweetening wastes’, Society of Petroleum Engineers, SPE 52717.

  • Sorensen, J. A., Hawthorne, S. B., Gallagher, J. R., Thompson, J. S. and Harju, J. A.: 1997, ‘Assessment of the subsurface environmental fate of amines used by the gas industry’, Society of Petroleum Engineers, SPE 37917.

  • Strong-Gunderson, J. M., Wheelis, S., Carroll, S. L., Waltz, M. D. and Palumbo, A. V.: 1995, Microbial Processes for Bioremediation, Battelle Press, Columbus, USA.

    Google Scholar 

  • Wrubleski, R. M., Drury, C. R. and Sevigny, J. H.: 1997, ‘Chemical contamination of groundwater at gas processing plants’, 6th Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Quebec, Canada, 18–21 March.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrklas, O., Chu, A., Lunn, S. et al. Biodegradation of Monoethanolamine, Ethylene Glycol and Triethylene Glycol in Laboratory Bioreactors. Water, Air, & Soil Pollution 159, 249–263 (2004). https://doi.org/10.1023/B:WATE.0000049178.93865.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000049178.93865.d4

Navigation