Skip to main content
Log in

Removal of Benzene by the Indoor Plant/Substrate Microcosm and Implications for Air Quality

Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The quality of the indoor environment has become a major health consideration, since urban-dwellers spend 80-90% of their time indoors, where air pollution can be several times higher than outdoors. ‘Indoor’ potted-plants can remove air-borne contaminants such as volatile organic compounds (VOCs), over 300 of which have been identified in indoor air. In this study a comparison was made of rates of removal of benzene, as model VOC, by seven potted-plant species/varieties. In static test-chambers, high air-borne doses of benzene were removed within 24 h, once the response had been stimulated (‘induced’) by an initial dose. Removal rates per pot ranged from 12-27 ppm d−1 (40 to 88 mg m−3 d−1) (2.5 to 5 times the Australian maximum allowable occupational level). Rates were maintained in light or dark, and rose about linearly with increased dose. Rate comparisons were also made on other plant parameters. Micro-organisms of the potting mix rhizosphere were shown to be the main agents of removal. These studies are the first demonstration of soil microbial VOC degradation from the gaseous phase. With some species the plant also made a measurable contribution to removal rates. The results are consistent with known, mutually supportive plant/soil-micro-organism interactions, and developments in microbially-based ‘biofilter reactors’ for cleaning VOC-contaminated air. The findings demonstrate the capacity of the potted-plant microcosm to contribute to cleaner indoor air, and lay the foundation for the development of the plant/substrate system as a complementary biofiltration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbritti, G. and Muzi, G.: 1995, ‘Indoor air quality and health effects in office buildings’, in M. Maroni (ed.), Proceedings of Healthy Buildings ‘95, an International Conference on Healthy Buildings in Mild Climate, University of Milano and International Centre for Pesticide Safety, Milano, Italy, September, 1995, pp. 185-195.

  • American Conference of Government and Industrial Hygienists (ACGIH): 1994-1995, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, ACGIH, Cincinnati, USA.

    Google Scholar 

  • American Lung Association: 2001, ‘When you can’t breathe, nothing else matters’, Air Quality, www.lungusa.org/air/.

  • Anderson, T. A., Guthrie, E. A. and Walton, B. T.: 1993, ‘Bioremediation in the rhizosphere’, Environ. Sci. Technol. 27 (13), 2630-2636.

    Google Scholar 

  • Bibeau, L., Kiared, K., Brzezinski, R., Viel, G. and Heitz, M.: 2000, ‘Treatment of air polluted with xylenes using a biofilter reactor’, Water, Air and Soil Pollut. 118, 377-393.

    Google Scholar 

  • Brasche, S., Bullinger, M., Gebhardt, H., Herzog, V., Hornung, P., Kruppa, B., Meyer, E., Morfeld, M., Schwab, R. V., Mackensen, S., Winkens, A. and Bischof, W.: 1999, ‘Factors Determining Different Symptom Patterns of Sick Building Syndrome - Results From a Multivariate Analysis’, in Proceedings of Indoor Air ‘99. The 8th International Conference on Indoor Air Quality and Climate, Edinburgh, Scotland, August, 1999, pp. 402-407.

  • Brigham, L. A., Nicoll, M. S. and Stephenson, M. B.: 1994, ‘Plant genes controlling the release of root exudates’, Biotechnol. Plant Protect. 4, 61-60.

    Google Scholar 

  • Brown, S. K.: 1997, ‘Volatile Organic Compounds in indoor air: sources and control’, Chemistry in Australia Jan/Feb, pp. 10-13.

  • Brown, S. K., Sim, M. R., Abramson, M. J. and Gray, C. N.: 1994, ‘Concentrations of volatile organic compounds in indoor air - A review’, Indoor Air, 4, 123-134.

    Article  Google Scholar 

  • Burken, J. G. and Schnoor, J. L.: 1996, ‘Phytoremediation: plant uptake of atrazine and role of root exudates’, J. Environ. Eng. 122, 958-963.

    Article  Google Scholar 

  • Cape, J. N., Binnie, J., Mackie, N. and Skiba, U. M.: 2000, ‘Uptake of volatile organic compounds by grass’, in Proceedings of Third SETAC World Congress, Brighton, U.K. pp. 21-25.

  • Carpenter, D. O.: 1998, ‘Human health effects of environmental pollutants: new insights’, Environ. Monit. Assess. 53, 245-258.

    Article  Google Scholar 

  • Carrer, P., Alcini, D., Cavallo, D., Visigalli, F., Bollini, D. and Maroni, M.: 1999, ‘Home andWorkplace Complaints and Symptoms in Office Workers and Correlation with Indoor Air Pollution’, in Proceedings of Indoor Air’99, The 8th International Conference on Indoor Air Quality and Climate, Edinburgh, Scotland, August, 1999, pp. 129-134.

  • Collins, C. D., Bell, J. N. B. and Crews, C.: 2000, ‘Benzene accumulation in horticultural crops’, Chemosphere 40, 109-114.

    Article  PubMed  Google Scholar 

  • Coward, M., Ross, D., Coward, S., Cayless, S. and Raw, G.: 1996, Pilot Study to Assess the Impact of Green Plants on NO 2 Levels in Homes, Building Research Establishment Note N154/96, Watford, UK.

  • Darlington, A., Chan, M., Malloch, D., Pilger, C. and Dixon, M. A.: 2000, ‘The biofiltration of indoor air: implications for air quality’, Indoor Air 10, 39-46.

    Article  PubMed  Google Scholar 

  • Giese, M., Bauer-Doranth, U., Langebartels, C. and Sandermann Jr., H.: 1994, ‘Detoxification of formaldehyde by the spider plant (Chlorophytum comosumL.) and by Soybean (Glycine maxL.) cell-suspension cultures’, Plant Physiol. 104, 1301-1309.

    PubMed  Google Scholar 

  • Howsam, M., Jones, K. C. and Ineson, P.: 2001, ‘PAHs associated with the leaves of three deciduous tree species II: uptake during a growing season’, Chemosphere 44, 155-164.

    Article  PubMed  Google Scholar 

  • Komp, P. and McLachlan, M. S.: 2001, ‘Influence of temperature on the plant/air partitioning of polychlorinated biphenyls’, Environ. Sci. Technol. 31, 886-890.

    Article  Google Scholar 

  • Krzyanowski, M.: 1999, ‘Strategic Approaches to Indoor Air Policy Making’, in Proceedings of Indoor Air’ 99, The 8th International Conference on Indoor Air Quality and Climate, Edinburgh, Scotland, August, 1999, pp. 230-232.

  • Lohr, V. I. and Pearson-Mims, C. H.: 1996, ‘Particulate matter accumulation on horizontal surfaces in interiors: influence of foliage plants’, Atmos. Environ. 30 (14), 2565-2568.

    Article  Google Scholar 

  • Marek, J., Paca, J. and Gerrard, A. M.: 2000, ‘Dynamic responses of biofilters to changes in the operating conditions in the process of removing toluene and xylene from air’, Acta Biotechnol. 20 (1), 17-29.

    Google Scholar 

  • Mohseni, M. and Allen, D. G.: 2000, ‘Biofiltration of hydrophilic and hydrophobic volatile organic compounds’, Chem. Eng. Sci. 55, 1545-1558.

    Article  Google Scholar 

  • National Occupational Health and Safety Commission (Australia) (NOHSC): 1991, Exposure Standards for Atmospheric Contaminants in the Occupational Environment. AGPS, Canberra, Australia.

    Google Scholar 

  • Nemergut, D. R., Wunch, K. G., Johnson, R. M. and Bennett, J. W.: 2000, ‘Benzo(a)pyrene removal by Marasmiellus troyanusin soil microcosms’, J. Ind. Microbiol. Biotechnol. 25 (2), 116-119.

    Article  Google Scholar 

  • Newman, L. A., Doty, S. L., Gery, K., Heilman, P. E., Muizieks, I., Shang, Q. T., Siemieniec, S. T., Strand, S. E., Wang, X., Wilson, A. M. and Gordon, M. P., 1998, ‘Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington’, J. Soil Contam. 7 (4), 531-542.

    Google Scholar 

  • Omasa, K., Tobe, K. and Kondo, T.: 2002, ‘Absorption of organic and inorganic air pollutants by plants’, in K. Omasa, H. Saji, S. Youssefian and N. Kondo (eds), Air Pollution and Plant Biotechnology: Prospects for Phytomonitoring and Phytoremediation. Springer, Tokyo, Berlin, Ch. 8, pp. 155-178.

    Google Scholar 

  • Peck, A. M. and Hornbuckle, K. C.: 2002, ‘Use of a Climate-Controlled Chamber to Investigate the Fate of Gas-Phase Anthracene’, Water, Soil and Air Pollut. (‘OO', from website), 1-18.

  • Pucci, O. H., Bak, M. A., Perressutti, S. R., Klein, I., Haertig, C., Alverez, H. M. and Wuensche, L.: 2000, ‘Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina)’, Acta Biotechnol. 20 (2), 129-146.

    Google Scholar 

  • Radwan, S. S., Al-Awadhi, H., Sorkhoh, N. A. and El-Nemr, I. M.: 1998, ‘Rhizospheric hydrocarbonutilizing micro-organisms as potential contributors to phytoremediation for the oily Kuwaiti Desert’, Microbiol. Res. 153 (3), 247-251.

    Google Scholar 

  • Schwab, A. P., Al-Assi, A. A. and Banks, M. K.: 1998, ‘Adsorption of naphthalene onto plant roots’, J. Environ. Qual. 27 (1), 220-224.

    Google Scholar 

  • Tarran, J., Orwell, R., Burchett, M. D., Wood, R. and Torpy, F.: 2002, Quantification of the Capacity of Indoor Plants to Remove Volatile Organic Compounds Under Flow-through Conditions, Final Report to Horticulture Australia, Sydney, Australia.

  • Ugrekhelidze, D., Korte, F. and Kvesitadze, G.: 1997, ‘Uptake and transformation of benzene and toluene in plant tissues’, Ecotoxicol. Environ. Safety 37, 24-29.

    Article  PubMed  Google Scholar 

  • Weschler, C. J. and Shields, H. C.: 1997, ‘Potential reactions among indoor air pollutants’, Atmos. Environ. 31 (21), 3487-3495.

    Article  Google Scholar 

  • Wolverton, B. C., Johnson, A. and Bounds, K.: 1989, Interior Landscape Plants for Indoor Air Pollution Abatement, Final Report, September N.A.S.A. 1989 Stennis Space Centre MS.

  • Wolverton, B. C. and Wolverton, J. D.: 1993, ‘Plants and soil micro-organisms-removal of formaldehyde, xylene and ammonia from the indoor environment’, J. Mississippi Acad. Sci. 38 (2), 11-15.

    Google Scholar 

  • Wolverton Environmental Services Inc.: 1991, Removal of Formaldehyde from Sealed Experimental Chambers, byAzalea, Poinsettia andDieffenbachia. Res. Rep. No. WES/100/01-91/005.

  • Wood, R. A., Orwell, R. L., Burchett, M. D., Tarran, J. and Brown, S. K.: 2000, ‘Absorption of organic compounds in indoor air by commonly used indoor plants’, in: O. Seppanen, and J. Sateri (eds), Proceedings of Healthy Buildings 2000, 6th International Healthy Buildings Conference, August, 2000, Espoo, Finland, Vol. 2, 125-130.

  • Wood, R. A., Orwell, R. L., Tarran, J., Torpy, F. and Burchett, M. D.: 2002, ‘Potted plant-growth media: interactions and capacities in removal of volatiles from indoor air’, J. Environ. Hort. Biotechnol. 77 (1), 120-129.

    Google Scholar 

  • Wood, R., Orwell, R., Tarran, J. and Burchett, M.: 2001, ‘Pot-Plants Really Do Clean Indoor Air’, The Nursery Papers, No. 2001/2, NIAA (Nursery Ind. Assocn. Aust.) Sydney, Australia.

    Google Scholar 

  • World Health Organisation 2000, The Right to Healthy Indoor Air - Report on a WHO Meeting, Bilthoven, The Netherlands, European HEALTH 21 Targets 10,13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret D. Burchett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orwell, R.L., Wood, R.L., Tarran, J. et al. Removal of Benzene by the Indoor Plant/Substrate Microcosm and Implications for Air Quality. Water, Air, & Soil Pollution 157, 193–207 (2004). https://doi.org/10.1023/B:WATE.0000038896.55713.5b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000038896.55713.5b

Navigation