Skip to main content
Log in

An Integration of Water Physicochemistry, Algal Bioassays, Phytoplankton, and Zooplankton for Ecotoxicological Assessment in a Highly Polluted Lowland River

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Results of different approaches potentially useful for the evaluation of water ambient quality were analysed and compared in a small temperate lowland river with mixed diffuse and multiple-point source pollution. The Reconquista River (Buenos Aires Province, Argentina), one of the most polluted watercourses of Latin America, receives agrochemicals as well as domestic and industrial (mostly untreated) effluents. Physical and chemical water variables were determined; unispecies algal bioassays (with Chlorella pyrenoidosa and Scenedesmus acutus) were carried out in laboratory; and density and structure of phyto- and zooplankton were analysed at three sites in four dates (representing a range of likely conditions in the river). A general scheme of association among plankton, bioassays and physical/chemical variables was elaborated, that helped to infer possible control factors in this multi-stressed system. Some empirical methods, but mainly mathematical ones including multivariate techniques (as PCA, cluster analysis), were applied for evaluation of samples. A preliminary selection of indices and attributes as potential indicators of the water river quality was made, and then applied for assay a tentative integrative ordination of samples. The relative best water quality was recorded when-where dissolved oxygen concentration, algal diversity and planktonic crustacean density were higher. The worst water quality corresponded to the lack of cladocerans and lowest crustacean density, and higher: organic and industrial pollution, major nutrients (ammonium and orthophosphates), BOD, hardness, conductivity, algal biomass in bioassays, phytoplankton density (>10 000 ind. mL-1), dominance of a single algal species (>90%), and rotifer proportion in zooplankton (>85%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, P. D.: 1996, Water Pollution Biology, Taylor and Francis, London.

    Google Scholar 

  • Accorinti, J.: 1960, ‘Cultivo unialgal y masivo de Scenedesmus obliquus Turp. KTZ. Técnicas de obtención’, Com. Mus. Arg. Cs. Nats., Cs. Bot. 1(9), 21–29.

    Google Scholar 

  • Angeli, N.: 1979, ‘Influencia de la Polución del Agua Sobre los Elementos del Plancton’, in P. Pesson (ed.), La Contaminación de las Aguas Continentales. Incidencias Sobre las Biocenosis Acuáticas, Mundi-Prensa, Madrid, pp. 115–158.

    Google Scholar 

  • APHA: 1992, Standard Methods for the Examination of Water and Wastewater, 18th ed., APHAAWWA-WPCF, Washington DC.

    Google Scholar 

  • Berón, L.: 1984, Evaluación de la calidad de las aguas de los ríos de la Plata y Matanza — Riachuelo mediante la utilización de índices de calidad de agua, Secretaría de Vivienda y Ordenamiento Ambiental, Ministerio de Salud y Acción Social, Buenos Aires.

    Google Scholar 

  • Bervoets, L., Baillieul, M., Blust, R. and Verheyen, R.: 1996, ‘Evaluation of effluent toxicity and ambient toxicity in a polluted lowland river’, Environ. Pollut. 91(3), 333–341.

    Article  CAS  Google Scholar 

  • Blaise, C., Bermingham, N. and Van Coillie, R.: 1985, ‘The integrated ecotoxicological approach to assessment of ecotoxicity’, Water Qual. Bull. 10(1), 3–7.

    Google Scholar 

  • Bodar, C. W. M., Van der Sluis, I., Van Montford, J. C. P., Voogt, P. A. and Zandee, D. I.: 1990, ‘Cadmium resistance in Daphnia magna’, Aquat. Toxicol. 16, 33–40.

    Article  CAS  Google Scholar 

  • Boyle, T. P. and Strand, M.: 2001, ‘The status of the macroinvertebrate community in the St. Croix River, Minnesota and Wisconsin: An examination of ecological health using techniques of multivariate analysis’, Aquat. Ecosys. Health Manage. 4, 311–325.

    Google Scholar 

  • Burnison, G., Wong, P. T. S., Chau, I. K. and Silverberg, B. A.: 1975, ‘Toxicity of cadmium to freshwater algae’, Proc. Can. Fed. Biol. Soc. Winnipeg 18, 182–188.

    Google Scholar 

  • Cairns Jr., J., Lanza, G. R. and Parker, B. C.: 1972, ‘Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa’, Proc. Academ. Natur. Scien. Philadelphia 124(5), 79–127.

    Google Scholar 

  • Cairns Jr., J., and McCormick, P. V.: 1992, ‘Developing an ecosystem-based capability for ecological risk assessments’, Environ. Prof. 14, 186–196.

    Google Scholar 

  • Castañé, P.M., Loez, C. R., Olguín, H., Puig, A., Rovedatti, M. G., Topalián, M. L. and Salibián, A.: 1998a, ‘Caracterización y variación espacial de parámetros fisicoquímicos y del plancton en un río urbano contaminado (Río Reconquista, Argentina)’, Rev. Int. Contam. Ambient. 14(2), 69–77.

    Google Scholar 

  • Castañé, P. M., Topalián, M. L., Rovedatti, M. G. and Salibián, A.: 1998b, ‘Impact of human activities on the water quality of the Reconquista River (Buenos Aires, Argentina)’, Verh. Internat. Verein. Limnol. 26, 1206–1208.

    Google Scholar 

  • De la Torre, F. R., Demichelis, S. O., Ferrari, L. and Salibián, A.: 1997, ‘Toxicity of Reconquista River water: Bioassays with juvenile Cnesterodon decemmaculatus’, Bull. Environ. Contam. Toxicol. 58, 558–565.

    CAS  Google Scholar 

  • Ferrari, L., Demichelis, S. O., García, M. E., De la Torre, F. R. and Salibián, A.: 1997, ‘Premetamorphic Anuran tadpoles as test organism for an acute aquatic toxicity assay’, Environ. Toxicol. Water Qual. 12, 117–121.

    Article  CAS  Google Scholar 

  • Gannon, J. E. and Stemberger, R. S.: 1978, ‘Zooplankton (especially crustaceans and rotifers) as indicators of water quality’, Trans. Amer. Micros. Soc. 97, 16–35.

    Google Scholar 

  • Hanazato, T. and Yasuno, M.: 1990, ‘Influence of persistence period of an insecticide on recovery patterns of a zooplankton community in experimental ponds’, Environ. Pollut. 67, 109–122.

    Article  CAS  Google Scholar 

  • Havens, K. E. and Hanazato, T.: 1993, ‘Zooplankton community responses to chemical stressors: A comparison of results from acidification and pesticide contamination research’, Environ. Pollut. 82, 277–288.

    Article  CAS  Google Scholar 

  • Källqvist, T.: 1984, ‘The Application of an Algal Assay to Assess Toxicity and Eutrophication in Polluted Streams’, in D. Pascoe and R. W. Edwards (eds), Freshwater Biological Monitoring, Pergamon Press, Oxford, New York, pp. 121–129.

    Google Scholar 

  • Klerks, P. L. and Levinton, J. S.: 1989, ‘Effects of Heavy Metals in a Polluted Aquatic Ecosystem’, in S. A. Levin, M. A. Harwell, J. R. Kelly and K. D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, Inc., pp. 41–67.

  • Lacoste, C. and Collasius, D.: 1996, ‘Instrumentos de diagnóstico ambiental: índice de calidad de agua’, Gerenc. Ambient. 3(24), 286–293.

    Google Scholar 

  • Lee, G. F. and Jones-Lee, A.: ‘Issues in Managing the Water Quality Impacts of Phosphorus in Runoff from Agricultural Lands’, in Proceedings of the American Chemical Society Agro Division Symposium ‘Environmental Impact of Fertilizer Products in Soil, Air and Water’, Chicago IL, August 2001 (in press).

  • Levin, S. A., Harwell, M. A., Kelly, J. R. and Kimball, K. D. (eds): 1989, Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, Inc.

  • Lewis, M. A.: 1995, ‘Use of freshwater plants for phytotoxicity testing: A review’, Environ. Pollut. 87, 319–336.

    Article  CAS  Google Scholar 

  • Loeb, S. L.: 1993, ‘An Ecological Context for Biological Monitoring’, in S. L. Loeb and A. Spacie (eds), Biological Monitoring of Aquatic Systems, Int. Soc. Limnology, BiologicalWorking Group Symp., Lafayette IN, U.S.A., 29 November—1 December 1990, Boca Raton, FL, U.S.A., Lewis Publishers, pp. 3–7.

    Google Scholar 

  • Loez, C. R., Salibián, A. and Topalián, M. L.: 1998, ‘Associations phytoplanctoniques indicatrices de la pollution par zinc’, Rev. Sci. Eau 11(3), 315–332.

    CAS  Google Scholar 

  • Loez, C. R., Topalián, M. L. and Salibián, A.: 1995, ‘Effects of zinc on the structure and growth dynamics of a natural freshwater phytoplankton assemblage reared in the laboratory’, Environ. Pollut. 88, 275–281.

    Article  CAS  Google Scholar 

  • Menhinick, E. F.: 1964, ‘A comparison of some species diversity indices applied to samples of field insects’, Ecology 45, 859–861.

    Google Scholar 

  • Munawar, M., Munawar, I. F. and Leppard, G. G.: 1989, ‘Early warning assays: An overview of toxicity testing with phytoplankton in the North American Great Lakes’, Hydrobiologia 188/189, 237–246.

    Google Scholar 

  • Noppe, K. and Prygiel, J.: 1999, ’Phytoplankton as an Eutrophication Indicator for the Main Watercourses of the Artois-Picardie Water Basin (France)‘, in J. Prygiel, B. A. Whitton and J. Bukowska (eds), Use of Algae for Monitoring Rivers III, Agence de l’Eau Artois-Picardie, France, pp. 194–205.

    Google Scholar 

  • Nusch, E. A.: 1978, ‘Development of planktonic algae in the Ruhr River dependent on nutrient supply, waterflow, irradiance and temperature’, Verh. Internat. Verein. Limnol. 20, 1837–1843.

    Google Scholar 

  • Olguín, H. F., Salibián, A. and Puig, A.: 2000, ‘Comparative sensitivity of Scenedesmus acutus and Chlorella pyrenoidosa as sentinel organisms for aquatic ecotoxicity assessment: Studies on a highly polluted urban river’, Environ. Toxicol. 15(1), 14–22.

    Article  Google Scholar 

  • Pielou, E. C.: 1969, An Introduction to Mathematical Ecology, Wiley-Interscience, New York.

    Google Scholar 

  • Pla, L. E.: 1986, Análisis Multivariado: Método de Componentes Principales, Secretaría General de la Organización de los Estados Americanos. Programa Regional de Desarrollo Científico y Tecnológico. Serie de Matemática, Monografía 27, Washington D.C.

    Google Scholar 

  • Reddy, G. N. and Prasad, M. N. V.: 1992, ‘Characterization of cadmium binding protein from Scenedesmus quadricauda and Cd toxicity reversal by phytochelatin constituting amino acids and citrate’, J. Plant Physiol. 140, 156–162.

    CAS  Google Scholar 

  • Reynolds, C. S.: 2003, ‘Planktic community assembly in flowing water and the ecosystem health of rivers’, Ecol. Model. 160(3), 191–203.

    Article  Google Scholar 

  • Roesijadi, G.: 1992, ‘Metallothioneins in metal regulation and toxicity in aquatic animals’, Aquat. Toxicol. 22, 81–114.

    Article  CAS  Google Scholar 

  • Rovedatti, M. G., Castañé, P. M., Topalián, M. L. and Salibián, A.: 2001, ‘Monitoring of organochlorine and organophosphorus pesticides in the water of the Reconquista River (Buenos Aires, Argentina)’, Water Res. 35(14), 3457–3461.

    Article  CAS  Google Scholar 

  • SEPA (Swedish Environmental Protection Agency): 1991, Quality Criteria for Lakes and Watercourses, Swedish Environmental Protection Agency, Solna, Sweden.

    Google Scholar 

  • Shannon, C. E. and Weaver, W.: 1949, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Smith, V. H., Tilman, G. D. and Nekola, J. C.: 1999, ‘Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems’, Environ. Pollut. 100, 179–196.

    Article  CAS  Google Scholar 

  • Sokal, R. R. and Sneath, P. H. A.: 1963, Principles of Numerical Taxonomy, Freeman, W. H. and Cía., San Fco., London.

    Google Scholar 

  • Topalián, M. L., Rovedatti, M. G., Castañé, P. M. and Salibián, A.: 1999a, ‘Pollution in a lowland river system. A case study: The Reconquista River (Buenos Aires, Argentina)’, Water, Air, Soil Pollut. 114, 287–302.

    Article  Google Scholar 

  • Topalián, M. L., Castañé, P. M., Rovedatti, M. G. and Salibián, A.: 1999b, ‘Principal component analysis of dissolved heavy metals in water of the Reconquista River (Buenos Aires, Argentina)’, Bull. Environ. Contam. Toxicol. 63, 484–490.

    Google Scholar 

  • Utermöhl, M.: 1958, ‘Zur Vervollkommung der quantitativen Phytoplankton-Methodik’, Mitt. Internat. Verein. Limnol. 9, 1–38.

    Google Scholar 

  • Vymazal, J.: 1987, ‘Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review’, Toxicity Assess. 2, 387–415.

    CAS  Google Scholar 

  • Wang, W.: 1987, ‘Factors affecting metal toxicity to (and accumulation by) aquatic organisms — Overview’, Environ. Int. 13, 437–457.

    CAS  Google Scholar 

  • Wilhm, J. L.: 1975, ‘Biological Indicators of Pollution’, in B. A. Whitton (ed.), River Ecology, Blackwell Scientific Publication, Oxford, pp. 375–402.

    Google Scholar 

  • Xu, F.-L., Jørgensen, S. E. and Tao, S.: 1999, ‘Ecological indicators for assessing freshwater ecosystem health’, Ecol. Model. 116, 77–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Puig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olguín, H.F., Puig, A., Loez, C.R. et al. An Integration of Water Physicochemistry, Algal Bioassays, Phytoplankton, and Zooplankton for Ecotoxicological Assessment in a Highly Polluted Lowland River. Water, Air, & Soil Pollution 155, 355–381 (2004). https://doi.org/10.1023/B:WATE.0000026538.51477.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000026538.51477.c2

Navigation