Advertisement

Water, Air, and Soil Pollution

, Volume 152, Issue 1–4, pp 153–172 | Cite as

Determination of 28 Elements in Aquatic Moss Fontinalis Antipyretica Hedw. and Water from the Upper Reaches of the River Nysa (CZ, D), by ICP-MS, ICP-OES and AAS

  • María D. Vazquez
  • Olaf Wappelhorst
  • Bernd Markert
Article

Abstract

The concentrations of 28 elements in samples of the bryophyte F. antipyretica Hedw collected from various sites on the upper reaches of the River Nysa and its main tributaries were determined. These results were compared with similar analyses of water samples collected at the same sites. So, it was possible to determine the elemental composition of the water both directly and indirectly, using a bioindicator organism. Analyses were carried out using different instrumental techniques (ICP-MS, ICP-OES, AAS), some elements being analysed by both ICP-MS and ICP-OES. Functional regression analysis showed that for some of these elements, namely Al, Ba, Fe, Sr and Ti in moss, and Ba, Ca and Zn in water samples, there was no significant difference (p < 0.05) in the concentrations determined by both techniques. The coefficients of correlation moss/water for each element were calculated, but they were in general low. However the coefficients of correlation between different elements were in general good. Finally, the elemental concentrations in the aquatic moss were also used to assess the level of contamination in the area of study, through the calculation of CF (Contamination Factor) values.

AAS aquatic moss bioaccumulation Contamination Factor Fontinalis antipyretica ICP multielement analysis River Nysa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckett, R. P. and Brown, E. H.: 1984, 'The control of cadmium uptake in the lichen genus Peltigera', J. Exp. Bot. 35, 1070–1082.Google Scholar
  2. Brown, D. H. and Becket, R. P.: 1984, 'Uptake and effect of cations on lichen metabolism', Lichenologist 16, 173–188.Google Scholar
  3. Brown, D. H. and Brinckmann, K.: 1992, 'Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eiffel Mountains, Germany', Plant Soil 143, 239–247.Google Scholar
  4. Burton, M. A. S. and Peterson, P. H.: 1979, 'Metal accumulation by aquatic bryophytes from polluted mine streams', Environ. Pollut. 19, 39–46.Google Scholar
  5. Carballeira, A. and López, J.: 1997, 'Physiological and statistical methods to identify background levels of metals in aquatic bryophytes: Dependence on lithology', J. Environ. Qual. 26, 980–988.Google Scholar
  6. Dolan, R., Van Loon, J., Templeton, D. and Paudyn, A.: 1990, 'Assessment of ICP-MS for routine multielement analysis of soil samples in environmental trace element studies', Fresenius J. Anal. Chem. 336, 99–105.Google Scholar
  7. Driscoll, C. T. and Schecher, W. D.: 1998, 'Aluminium in the Environment', in H. Sigel and A. Sigel (eds), Metal Ions in Biological Systems, Aluminium and its Role in Biology, Vol. 24, Marcel Dekker Inc., New York, pp. 59–122.Google Scholar
  8. Förstner, U. and Wittmann, G. T. W.: 1983, Metal Pollution in the Aquatic Environment, Springer-Verlag, New York.Google Scholar
  9. Ganeva, A.: 1998, 'Airborne pollution in “Parangalitza” biosphere reserve (Rila mountain) estimated by means of bryophytes', Herzogia 13, 113–118.Google Scholar
  10. Glime, J. M.: 1992, 'Effects of Pollutants on Aquatic Species', in J. W. Bates and A. M. Farmer (eds), Bryophytes and Lichens in a Changing Environment, Oxford University Press, Oxford, pp. 333–361.Google Scholar
  11. Gonçalves, E. P. R., Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C. and Esteves da Silva, J. C. G.: 1994, 'Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal)', Sci. Total Environ. 142, 143–156.Google Scholar
  12. Ho, Y. S., Wase, D. A. J. and Forster, C. F.: 1996, 'Kinetics studies of competitive heavy metal adsorption by Sphagnum moss peats', Environ. Technol. 17, 71–77.Google Scholar
  13. López, J. and Carballeira, A.: 1993, 'Interspecific differences in metal bioaccumulation and plantwater concentration ratios in five aquatic bryophytes', Hydrobiologia 263, 95–107.Google Scholar
  14. López, J., Vázquez, M. D. and Carballeira, A.: 1994, 'Stress responses and metal exchange kinetics following transplant of the aquatic moss Fontinalis antipyretica Hedw', Freshwater Biol. 22, 185–198.Google Scholar
  15. Markert, B.: 1993, 'Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples', Fresenius J. Anal. Chem. 345, 318–322.Google Scholar
  16. Markert, B. and Wtorova, W.: 1992, 'Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR', Vegetatio 98, 43–58.Google Scholar
  17. Markert, B., Herpin, U., Siewers, U., Berlekamp J. and Lieth, H.: 1996, 'The German heavy metal survey by means of mosses', Sci. Total Environ. 182, 159–168.PubMedGoogle Scholar
  18. Mouvet, C., Cordebar, P. and Gallisot, B.: 1986, 'Evaluation de rejets de micropoluants minéraux (métaux lourds) et organiques (organochlorés) par dosages dans les mousses aquatiques', XIX Journées de l'Hydraulique, Paris.Google Scholar
  19. Phillips, D. J. H.: 1980, Quantitative Aquatic Biological Indicators, Applied Science Publishers, London.Google Scholar
  20. Rasmussen, G. and Andersen, S.: 1999, 'Episodic release of arsenic, copper and chromium from a wood preservation site monitored by transplanted aquatic moss', Water, Air, and Soil Pollut. 109, 41–52.Google Scholar
  21. Ricker, W. E.: 1972, 'Linear regressions in fishery research', J. Fish. Res. Board Can. 30, 409–434.Google Scholar
  22. Rodushkin, I., Ruth T. and Huhtasaari, A.: 1999a, 'Comparison of two digestion methods for elemental determinations in plant material by ICP techniques', Anal. Chim. Acta 378, 191–200.Google Scholar
  23. Rodushkin, I., Ödman, F. and Holmström, H.: 1999b, 'Multi-element analysis of wild berries from northern Sweden by ICP techniques', Sci. Total Environ. 231, 53–65.Google Scholar
  24. Roeck, U., Glasser, N. and Trémolières, M.: 1995, 'Seasonal variations in mercury accumulation by the aquatic moss Fontinalis antipyretica Hedw', Acta Bot. Gallica 142(6), 741–749.Google Scholar
  25. Rühling, A. and Tayler, G.: 1968, 'An ecological approach to the lead problem', Bot. Notiser 121, 321–342.Google Scholar
  26. Say, P. J. and Whitton, B. A.: 1983, 'Accumulation of heavy metals by aquatic mosses. 1. Fontinalis antipyretica Hedw', Hydrobiologia 100, 245–260.Google Scholar
  27. Siebert, A., Bruns, I., Krauss, G.-J., Miersch, J. and Markert, B.: 1996, 'The use of the aquatic moss Fontinalis antipyretica L. Ex Hedw as a bioindicator for heavy metals', Sci. Total Environ. 177, 137–144.Google Scholar
  28. Ting Y. P. and Teo, W. K.: 1995, 'Uptake of cadmium and zinc by yeast: Effects of co-metal ion and physical/chemical treatment', Bioresour. Technol. 50, 113–117.Google Scholar
  29. Villares, R., Puente, X. and Carballeira, A.: 2001, 'Ulva and Enteromorpha as indicators of heavy metal pollution', Hydrobiologia 462(1–3), 221–232.Google Scholar
  30. Wappelhorst, O., Kühn, I., Oehlmann, J. and Markert, B.: 2000, 'Deposition and Disease – A moss monitoring project as an approach to ascertaining potential connections', Sci. Total Environ. 249, 243–256.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • María D. Vazquez
    • 1
  • Olaf Wappelhorst
    • 2
  • Bernd Markert
    • 2
  1. 1.Spain (author for correspondence
  2. 2.Germany

Personalised recommendations