Skip to main content
Log in

Modeling of Flow at Hydraulic Structures in the Shelf Zone of Seas

  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A technique for numerical modeling of hydrodynamic fields at a hydraulic structure on the shelf of a marginal or closed sea is described. Examples of calculations for a specific facility in the shelf zone of the Northern Caspian Sea are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bogdanovskii, A.A. and Kochergin, I.E., Parameterization of the Characteristics of Mixing for Typical Conditions in Northeastern Sakhalin Shelf, Gidrometeorologicheskie protsessy na shel'fe: otsenka vozdeistviya na morskuyu sredu (Hydrometeorological Processes on the Shelf: Assessment of Impact on Marine Environment), Vladivostok: Dal'nauka, 1998, pp. 89–102.

    Google Scholar 

  2. Vol'tsinger, N.E. and Pyaskovskii, R.V., Teoriya Melkoi Vody: Okeanologicheskie Zadachi i Chislennye Metody (Shallow-Water Theory: Oceanological Problems and Numerical Methods), Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  3. Gidrometeorologicheskie usloviya shel'fovoi zony morei SSSR (Hydrometeorological Conditions of the Shelf Zone of Seas in the USSR), Leningrad: Gidrometeoizdat, 1986, vol. 2, no. 2.

  4. Ivanenko, S.A., Mesh Shape Control in the Process of Its Construction, Zhurn. Vychisl. Matematiki i Matem. Fiziki, 2000, vol. 40, no. 11, pp. 1662–1676.

    Google Scholar 

  5. Ivanenko, S.A. and Charakhch'yan, A.A., Algorithm for Construction of Curvilinear Meshes of Convex Quadrangles, Dokl. Akad. Nauk SSSR, 1987, vol. 295, no. 2, pp. 280–283.

    Google Scholar 

  6. Ivanov, M.Ya. and Krupa, V.G., Implicit Nonfactorized Method for Calculating Turbulent Flows of Viscous Heat-Conducting Gas in Gratings of Turbomachines, Zhurn. vychisl. matematiki i matem. fiziki, 1991, vol. 31, no. 5, pp. 754–765.

    Google Scholar 

  7. Kolmogorov, A.N., Local Structure of Turbulence in an Incompressible Liquid at Very High Reynolds Numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–303.

    Google Scholar 

  8. Koterov, V.N., Kocherova, A.S., and Krivtsov, V.M., On a Procedure for the Calculation of Incompressible Fluid Flow, Zhurn. Vychisl. Matematiki i Matem. Fiziki, 2002, vol. 42, no 4. pp. 550–558.

    Google Scholar 

  9. Koterov, V.N., Savel'ev, A.D., and Tolstykh, A.I., Numerical Modeling of Aerooptic Fields Near the Receiver Port of an Air Observatory, Matem. Modelirovanie, 1997, vol. 9, no. 1, pp. 27–39.

    Google Scholar 

  10. Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations), Moscow: Fizmatlit, 2001.

    Google Scholar 

  11. Lapin, Yu. V. and Strelets, M. Kh., Vnutrennie Techeniya Gazovykh Smesei (Internal Flows of Gas Mixtures), Moscow: Nauka, 1989.

    Google Scholar 

  12. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), Moscow: Nauka, 1965.

    Google Scholar 

  13. Obukhov, A.M., On the Distribution of Energy in the Spectrum of a Turbulent Flow, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1941, vol. 5, nos. 4's5, pp. 453–466.

    Google Scholar 

  14. Ovsyannikov, L.V., Lektsii po osnovam gazovoi dinamiki (Lectures on Gas Dynamics Foundations), Moscow: Nauka, 1981.

    Google Scholar 

  15. Ozmidov, R.V., Diffuziya primesei v okeane (Diffusion of a Solute in the Ocean), Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

  16. Ozmidov. R.V., On Some Singularities of the Energy Spectrum of Oceanic Turbulence, Dokl. Akad. Nauk SSSR, 1965, vol. 161, no. 4, pp. 828–831.

    Google Scholar 

  17. Pukhtyar, L.D. and Osipov, Yu.S., Turbulent Characteristics of the Coastal Zone of Sea, Tr. Gos. Okeanogr. Inst., 1981, no. 158, pp. 35–40.

  18. Coacley, T.J., Numerical Simulation of Viscous Transonic Airfoil Flows, AIAA Pap., 1987, no. 87-0416, pp. 21–29.

  19. Coacley, T.J., Turbulence Modeling Methods for the Compressible Navier-Stokes Equations, AIAA Pap., 1983, no. 83-1693, pp. 11–18.

  20. Knight, C.J. and Choi, D., Development of a Viscous Cascade Code Based on Scalar Implicit Factorization, AIAA Pap., 1987, no. 87-2150, pp. 4–12.

  21. Vuong, S.T. and Coacley, T.J., Modeling of Turbulence for Hypersonic Flows with and without Separation, AIAA Pap., 1987, no. 87-0286, pp. 27–37.

  22. Wolanski, E., Asaeda, T., Tanaka, A., and Deleersnijder, E., Tree-Dimensional Island Wakes in the Field, Laboratory Experiments and Numerical Models, Continental Shelf Res., 1996, vol. 16, no. 11, pp. 1437–1452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipov, B.V., Koterov, V.N., Kochetova, A.S. et al. Modeling of Flow at Hydraulic Structures in the Shelf Zone of Seas. Water Resources 30, 653–658 (2003). https://doi.org/10.1023/B:WARE.0000007592.61838.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WARE.0000007592.61838.1d

Keywords

Navigation