Skip to main content
Log in

A Six-Stimulus Theory for Stochastic Texture

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We report a six-stimulus basis for stochastic texture perception. Fragmentation of the scene by a chaotic process causes the spatial scene statistics to conform to a Weibull-distribution. The parameters of the Weibull distribution characterize the spatial structure of uniform stochastic textures of many different origins completely. In this paper, we report the perceptual significance of the Weibull parameters. We demonstrate the parameters to be sensitive to orthogonal variations in the imaging conditions, specifically to the illumination conditions, camera magnification and resolving power, and the texture orientation. Apparently, the Weibull parameters form a six-stimulus basis for stochastic texture description. The results indicate that texture perception can be approached like the experimental science of colorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, A.J. and Sejnowski, T.J. 1997. The independent components of natural scenes are edge filters. Vision Res., 37:3327–3338.

    Article  CAS  PubMed  Google Scholar 

  • Brown, W.K. 1989. A theory of sequential fragmentation and its astronomical applications. J. Astrophys. Astr, 10:89–112.

    Google Scholar 

  • Brown, W.K. and Wohletz, K.H. 1995. Derivation of the weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. J. Appl. Phys., 78:2758–2763.

    Article  CAS  Google Scholar 

  • Cula, O.G. and Dana, K.J. 2001. Compact representation of bidirec-tional texture functions. In Proc. IEEE Conf Comput. Vision Pat. Rec., vol. 1, IEEE Computer Society, pp. 1041–1047.

    Google Scholar 

  • Dana, K.J. and Nayar, S.K. 1999. Correlation model for 3D texture. In Proc. 7th Int. Conf Comput. Vision. IEEE Computer Society, pp. 1061–1066.

  • Dana, K.J., van Ginneken, B., Nayar, S.K., and Koenderink, J.J. 1999. Reflectance and texture of real world surfaces. ACM Trans Graphics, 18:1–34.

    Article  Google Scholar 

  • Filliben, J.J. et al. 2002. NIST/SEMTECH Engineering Statis-tics Handbook. Gaithersburg: www.itl.nist.gov/div898handbook, NIST.

  • Geusebroek, J.M. and Smeulders, A.W.M. 2002. A physical ex-planation for natural image statistics. In Proceedings of the 2nd International Workshop on Texture Analysis and Synthe-sis (Texture 2002). M. Chantler (Ed.), Heriot-Watt University, pp. 47–52.

  • Geusebroek, J.M. and Smeulders, A.W.M. 2003. Fragmentation in the vision of scenes. In Proc. 9th Int. Conf Comput. Vision. IEEE Computer Society (in press).

  • Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., and Geerts, H. 2001. Color invariance. IEEE Trans. Pattern Anal. Ma-chine Intell., 23(12):1338–1350.

    Article  Google Scholar 

  • Gnedenko, B.V. and Kolmogorov, A.N. 1968. Limit Distributions for Sums of Independent Random Variables. Addison-Wesley: Boston.

    Google Scholar 

  • Julesz, B. 1981. Textons, the elements of texture perception, and their interactions. Nature, 290:91–97.

    Article  CAS  PubMed  Google Scholar 

  • Koenderink, J.J. 1984. The structure of images. Biol. Cybern., 50:363–370.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • Leung, T. and Malik, J. 2001. Representing and recognizing the vi-sual appearance of materials using three-dimensional textons. Int. J. Comput. Vision, 43:29–44.

    Article  Google Scholar 

  • Liu, Y. and Tsin, Y. 2002. The promise and the perils of near-regular texture. In Proceedings of the 2ndnternational Workshop on Tex-ture Analysis and Synthesis (Texture 2002). M. Chantler (Ed.), Heriot-Watt University, pp. 77–81.

  • Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 11:674–693.

    Article  Google Scholar 

  • Mandelbrot, B.B 1983. The Fractal Geometry of Nature. W.H. Freeman and Co: New York, NY.

    Google Scholar 

  • Pentland, AP. 1984. Fractal-based description of natural scenes.IEEE Trans. Pattern Anal. Machine Intell., 6:661–674.

    Google Scholar 

  • Pentland, AP. 1990. Linear shape from shading. Int. J. Comput. Vision, 4:153–163.

    Article  Google Scholar 

  • Pont, S.C. and Koenderink, J.J. 2002. Bidirectional texture contrast function. In Proc. 7th Europ. Conf on Comput. Vision. vol. 4, LNCS 2353, Springer-Verlag, pp. 808–822.

    Google Scholar 

  • Simoncelli, E.P. 1999. Modeling the joint statistics of images in the wavelet domain. In Proc. SPIE. vol. 3813, SPIE, pp. 188–195.

    Article  Google Scholar 

  • Suen, P. and Healey, G. 2000. The analysis and recognition of real-world textures in three dimensions. IEEE Trans. Pattern Anal. Machine Intell., 22(5):491–503.

    Article  Google Scholar 

  • Tamura, H., Mori, S., and Yamawaki, T. 1978. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern., 8:460–473.

    Google Scholar 

  • Zhu, S.C., Liu, X., and Wu, Y.N. 2000. Exploring texture ensembles by efficient Markov Chain Monte Carlo-Toward a trichromacy theory of texture. IEEE Trans. Pattern Anal. Machine Intell., 22:554–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusebroek, JM., Smeulders, A.W. A Six-Stimulus Theory for Stochastic Texture. Int J Comput Vision 62, 7–16 (2005). https://doi.org/10.1023/B:VISI.0000046586.95219.e7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VISI.0000046586.95219.e7

Navigation