Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virus Genes
  3. Article
The Changes in the T helper 1 (Th1) and T helper 2 (Th2) Cytokine Balance During HIV-1 Infection are Indicative of an Allergic Response to Viral Proteins that may be Reversed by Th2 Cytokine Inhibitors and Immune Response Modifiers – a Review and Hypothesis
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Helios expressing regulatory T cells are correlated with decreased IL-2 producing CD8 T cells and antibody diversity in Mozambican individuals living chronically with HIV-1

14 March 2022

Raquel Matavele Chissumba, Cacildo Magul, … for the RV363 Study Group

Helminth antigens differentially modulate the activation of CD4+ and CD8+ T lymphocytes of convalescent COVID-19 patients in vitro

28 June 2022

Tomabu Adjobimey, Julia Meyer, … Achim Hoerauf

Preceding Viral Infections Do Not Imprint Long-Term Changes in Regulatory T Cell Function

20 May 2020

Felix Rost, Katharina Lambert, … Nicole Joller

A high CMV-specific T cell response associates with SARS-CoV-2-specific IL-17 T cell production

13 December 2022

Fernanda Tereza Bovi Frozza, Tiago Fazolo, … Cristina Bonorino

Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART

11 October 2019

Girmay Desalegn, Aster Tsegaye, … Rawleigh Howe

The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses

06 August 2018

Eirini Moysi, Constantinos Petrovas & Richard A. Koup

Association of NFκB and related-cytokines with the viral load and development of antibodies against HHV-8 in people living with HIV/AIDS

04 October 2019

Juliana Prado Gonçales, Thaísa Regina Rocha Lopes, … Maria Rosangela Cunha Duarte Coêlho

Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases

12 October 2022

Ejuan Zhang, Zhiyong Ma & Mengji Lu

HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers

15 July 2019

Tinashe E. Nyanhete, Alyse L. Frisbee, … Georgia D. Tomaras

Download PDF
  • Published: January 2004

The Changes in the T helper 1 (Th1) and T helper 2 (Th2) Cytokine Balance During HIV-1 Infection are Indicative of an Allergic Response to Viral Proteins that may be Reversed by Th2 Cytokine Inhibitors and Immune Response Modifiers – a Review and Hypothesis

  • Yechiel Becker1 

Virus Genes volume 28, pages 5–18 (2004)Cite this article

  • 732 Accesses

  • 85 Citations

  • 3 Altmetric

  • Metrics details

Abstract

The HIV-1 infection in humans induces an early cellular immune response to react to the viral proteins with a cytotoxic T cell (CTL) response that fails to inhibit virus replication and the spread of the virus. It became evident that the progression of the disease causes chronic changes to the immune system of which a gradual increase in IgE antibodies is one of its features. When the HIV-1 epidemic began, the relation between the gradual increase in IgE content and AIDS was not understood, but later it became a marker for disease prognosis. The advances in the knowledge on T helper 1 (Th1) and T helper 2 (Th2) cells revealed that Th1 cells produce cytokines that stimulate the proliferation of CTLs. Th2 cells produce cytokines that are responsible for the activation of the humoral immune response in healthy people. Studies on both Th1 and Th2 cytokine synthesis revealed an aberration in HIV-1 infected people. Clerici and Shearer presented a hypothesis (1993) whereby Th1 cell activity declines and Th2 activity increases (the Th1 → Th2 switch hypothesis) in HIV-1 infected people. In fact, experiments concerning this hypothesis ultimately supported the premise that the switch involves a critical change in the cytokine balance, which leads to the contraction of AIDS. However, the research community must still discern why such a Th1 → Th2 switch takes place in infected people and how it can be reversed. The present review points to the fact that a similar Th1 → Th2 switch constitutes the response of allergic people to environmental allergens. HIV-1 patients and allergic people that are exposed to allergens respond with an increased synthesis of Th2 cytokines and IgE, together with a decrease in Th1 cytokines. The studies on allergen-induced Th2 cells revealed that the Th2 cytokine IL-4 induces B cells to synthesize IgE, and cytokine IL-5 is the inducer of eosinophilia, just as in HIV-1 infection. The difference between the HIV-1 infection and allergies is the ability of IL-4 to induce the synthesis in T cells of the HIV-1 coreceptor CXCR4 that selects from the replicating virus a syncytium-inducing (SI) virus, a variant virus that replicates rapidly. The present hypothesis implicates the viral proteins in the induction of Th2 cytokine synthesis. This suggests that in viral proteins, allergen-like domains may be responsible for the activation of Th2 cytokine synthesis. Based on the analogy of the responses of humans to allergens and HIV-1, the following hypotheses is suggested: (a) Removal of allergen-like domains from viral genes by genetic engineering may provide viral proteins for vaccine development. (b) Attempts to treat allergic patients with IL-4 receptor inhibitors suggests that the “Th2 → Th1 Reversion” constitutes a possible approach to inhibiting the Th2 cytokines and inducing a revival of the anti-viral Th1 response.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Klausner R.D., Fauci A.S., Corey L., Nabel G.J., Gale H., Berkley S., et al, Science 300, 2036–2039, 2003.

    Google Scholar 

  2. Becker Y., Virus Genes 27,3, 269–282, 2003.

    Google Scholar 

  3. Wright D.N., Nelson R.P., Ledford D.K., Fernandez-Caldas E., Trudeau W.L., and Lockey R.F., J Allergy Clin Immunol 85, 445–452, 1990.

    Google Scholar 

  4. Murray H.W., Rubin B.Y., Masur H., and Roberts R.B., New Engl J Med 313, 1504–1510, 1985.

    Google Scholar 

  5. Israël-Biet D., Labrousse F., Tourani J.-M., Sors H., Andrieu J.-M., and Even P., J Allergy Clin Immunol 89, 68–75, 1992.

    Google Scholar 

  6. Ammann A.J., Abrams D., Conant M., Chudwin D., Cowan M., Volberding P., Lewis B., and Casavant C., Clin Immunol Immunopathol 27, 315–325, 1983.

    Google Scholar 

  7. Romagnani S., Del Prete G., Maggi E., Parronchi P., Tiri A., Macchia D., Giudizi M.G., Almerigogna F., and Ricci M., Clin Immunol Immunpathol 50, S13–S23, 1989.

    Google Scholar 

  8. Miguez-Burbano M.J., Shor-Posner G., Fletcher M.A., Lu Y., Moreno J.N., Carcamo C., Page B., Quesada J., Sauberlich H., and Baum M.K., Allergy 50, 157–161, 1995.

    Google Scholar 

  9. Shor-Posner G., Miguez-Burbano J.M., Lu Y., Feaster D., Fletcher M.A., Sauberlich H., and Baum M.K., J Allergy Clin Immunol 95, 886–892, 1995.

    Google Scholar 

  10. Mazza D.S., Grieco M.H., Reddy M.M., and Meriney D., Annals of Allergy, Asthma Immunol 74, 411–414, 1995.

    Google Scholar 

  11. Koutsonikolis A., Nelson R.P., Fernandez-Caldas E., Brigino E.N., Seleznick M., Good R.A., and Lockey R.F., J Allergy Clin Immunol 97, 692–697, 1996.

    Google Scholar 

  12. Vigano A., Principi N., Crupi L., Ornorato J., Vincenzo Z.G., and Salvaggio A., J Allergy Clin Immunol 95, 627–634, 1995.

    Google Scholar 

  13. Secord E.A., Kleiner G.I., Auci D.L., Smith-Norowitz T., Chice S., Finkilstein A., Nowakowski M., Fikrig S., and Durkin H.G., J Allergy Clin Immunol 98, 979–984, 1996.

    Google Scholar 

  14. Khalife J., Guy B., Capron M., Kieny M.P., Ameisen J.C., Montagnier L., Lecocq J.P., and Capron A., AIDS Res Hum Retroviruses 4, 3–9, 1988.

    Google Scholar 

  15. Duglas N., Dereuddre-Bosquet N., Goujard C., Dormont D., Tardieu M., and Delfraissy J.-F., AIDS Res Hum Retroviruses 16, 251–258, 2000.

    Google Scholar 

  16. Clerici M., Hakim F.T., Venzon D. J., Blatt S., Hendrix C.W., Wynn T.A., and Shearer G.M., J Clin Invest 91, 759–765, 1993.

    Google Scholar 

  17. Clerici M. and Shearer G.M., Immunol Today 14, 107–111, 1993.

    Google Scholar 

  18. Romagnani S., Del Prete G., Manetti R., Ravina A., Annunziato F., De Carli M., Mazzetti M., Piccinni M.-P., D'Elios M.M., Parronchi P., Sampognaro S., and Maggi E., Immunol Rev 140, 73–92, 1994.

    Google Scholar 

  19. Maggi E., Mazzetti M., Ravina A., Annunziato F., De Carli M., Piccinni P., Manetti R., Carbonari M., Pesce A.M., Del Prete G., and Romagnani S., Science 265, 244–248, 1994.

    Google Scholar 

  20. Graziosi C., Pantaleo G., Gantt K.R., Fortin J.-P., Demarest J.F., Cohen O.J., Sékaly R.P., and Fauci A.S., Science 265, 248–252, 1994.

    Google Scholar 

  21. Graziosi C., Gantt K.R., Vaccarezza M., Demarest J.F., Daucher MB., Saag M.S., Shaw G.M., Quinn T.C., Cohen O.J., Welbon C.C., Pantaleo G., and Fauci A.S., Proc Natl Acad Sci USA 93, 4386–4391, 1996.

    Google Scholar 

  22. Tanaka M., Hirabayashi Y., Gatanaga H., Aizawa S., Hachiya A., Takahashi Y., Tashiro E., Kohsaka T., Oyamada M., Ida S., and Oka S., Scand J Immunol 50, 550–554, 1999.

    Google Scholar 

  23. Maggi E., Grazia Giudizi M., Biagiotti R., Annunziato F., Manetti R., Piccinni M.-P., Parronchi P., Sampognaro S., Giannarini L., Zuccati G., and Romagnani S., J Exp Med 180, 489–495, 1994.

    Google Scholar 

  24. Autran B. Legac E., Blanc C., and Debré P., J Immunol 154, 1408–1417, 1995.

    Google Scholar 

  25. Meroni L., Trabattoni D., Balotta C., Riva C., Gori A., Moroni M., Luisa Villa M., Clerici M., and Galli M., AIDS 10, 23–30, 1996.

    Google Scholar 

  26. Klein S.A., Dobmeyer J.M., Dobmeyer T.S., Pape M., Ottmann O.G., Helm E.B., Hoelzer D., and Rossol R., AIDS 11, 1111–1118, 1997.

    Google Scholar 

  27. Wasik T.J., Jagodzinski P.P., Hyjek E.M., Wustner J., Trinchieri G., Lischner H.W., and Kozbor D., J Immunol 158, 6029–6036, 1997.

    Google Scholar 

  28. Mirza O., Henriksen A., Ipsen H., Larsen J.N., Wissenbach M., Sprangfort M.D., and Gajhede M., J Immunol 165, 331–338, 2000.

    Google Scholar 

  29. Ichikawa S., Hatanaka H., Yuciki T., Iwamoto N., Kojima S., Nishiyama C., Ogura K., Okumura Y., and Inagaki F., J Biol Chem 273, 356–360, 1998.

    Google Scholar 

  30. Aalberse R.C., J Allergy Clin Immunol 106, 228–238, 2000.

    Google Scholar 

  31. Trumpfheller C., Tenner-Racz K., Racz P., Fleishcer B., and Frosch S., Clin Exp Immunol 112, 92–99, 1998.

    Google Scholar 

  32. Torres Y., Medrano F.J., Rey C., Calderón E.J., Sánchez-Quijano A., Lissen E., and Leal M., Eur J Clin Invest 28, 930–936, 1998.

    Google Scholar 

  33. Valentin A., Lu W., Rosati M., Schneider R., Albert J., Karlsson A., and Pavlakis G.N., Proc Natl Acad Sci 95, 8866–8891, 1998.

    Google Scholar 

  34. Wang J., Harada A., Matsushita S., Matsumi S., Zhang Y., Shioda T., Nagai Y., and Matsushima K., J Leukoc Biol 64, 642–649, 1998.

    Google Scholar 

  35. Biasin M., Boasso A., Piacentini L., Trabattoni D., Magri G., Deshmuks R., Deshpande A., and Clerici M., AIDS 17, 1563–1565, 2003.

    Google Scholar 

  36. Kwa D., van Rij R.P., Boeser-Nunnink B., Vingerhoed J., and Schuitemaker H., AIDS 17, 981–985, 2003.

    Google Scholar 

  37. Nakayama E.E., Meyer L., Iwamoto A., Persoz A., Nagai Y., Rouzioux C., Delfraissy J.-F., Debre P., McIlroy D., Theodorou I., Shioda T., and The SEROCO Study Group, J Infect Dis 185, 1183–1186, 2002.

    Google Scholar 

  38. Mackewicz C.E., Ortega H., and Levy J.A., Cell Immunol 153, 329–343, 1994.

    Google Scholar 

  39. Levy J.A., Mackewicz C.E., and Barker E., Immunol Today 17, 217–224, 1996.

    Google Scholar 

  40. Zhang L., Yu W., He T., Yu J., Caffrey R.E., Dalmasso E.A., Fu S., Pham T., Mei J., Jo J.J., Zhang W., Lopez P., and Ho D.D., Science 298, 995–1000, 2002.

    Google Scholar 

  41. Ong P.Y., Takaaki O., Brandt C., Strickland I., Boguniewicz M., Ganz T., Gallo R.L., and Leung D.Y.M., N Engl J Med 347, 1151–1160, 2002.

    Google Scholar 

  42. Herrick C.A., MacLeod, Glusac E., Tigelaar R.E., and Bottomly K., J Clin Invest 105, 765–775, 2000.

    Google Scholar 

  43. Kelly-Welch A.E., Hanson E.M., Boothby M.R., and Keegan A.D., Science 300, 1527–1528, 2003.

    Google Scholar 

  44. Imani F., Proud D., and Griffin D.E., J Immunol 162, 1597–1602, 1999.

    Google Scholar 

  45. Mueller T.D., Zhang J.-L., Sebald W., and Duschel A., Biochimica et Biophysics Acta 1592, 237–250, 2002.

    Google Scholar 

  46. Stolzenberger S., Haake M., and Duschl A., Eur J Biochem 268, 4809–4814, 2001.

    Google Scholar 

  47. Cornelis S., Fache I., Vand der Heyden J., Guisez Y., Tavernier J., Devos R., Fiers W., and Plaetinck G., Eur J Immunol 25, 1857–1864, 1995.

    Google Scholar 

  48. Chen J.X., Watanabe S., Muto A., Miyajima A., Yokota T., and Arai K.-I., J Allergy Clin Immunol 94, 605–611,1994.

    Google Scholar 

  49. Ingley E., Cutler R.L., Fung M.-C., Sanderson C.J., and Young I.G., Eur J Biochem 196, 623–629, 1991.

    Google Scholar 

  50. Van der Weshuizen F.H., Pretorius P.J., and de Wet W.J., Biochem Biophysical Res Communications 227, 576–580, 1996.

    Google Scholar 

  51. Kozyrev I.L., Miura T., Haga T., Kuwata T., and Hayami M., Arch Virol 146, 1051–1062, 2001.

    Google Scholar 

  52. Kozyrev I.L., Miura T., Takemura T., Kuwata T., Ui M., Ibuki K., Iida T., and Hayami M., J Gen Virol 83, 1183–1188, 2002.

    Google Scholar 

  53. Tiffany H.L., Alkhatib G., Combadiere C., Berger E.A., and Murphy P.M., J Immunol 160, 1385–1392, 1998.

    Google Scholar 

  54. Heijink I.H., Kauffman H.F., Postma D.S., de Monchy J.G.R., and Vellenga E., Eur J Immunol 33, 2206–2215, 2003.

    Google Scholar 

  55. So E.-Y., Kim S.-H., Park H.-H., Cho B.-S., and Lee C.-E., FEBS Lett 518, 53–59, 2002.

    Google Scholar 

  56. Beutner K.R., Spruance S.L., Hougham A.J., Fox T.L., Owens M.L., and Douglas J.M., J Am Acad Dermatol 38, 230–239, 1998.

    Google Scholar 

  57. Wagner T.L., Horton V.L., Carlson G.L., Myhre P.E., Gibson S.J., Imbertson L.M., and Tomai M.A., Cytokine 9, 837–845, 1997.

    Google Scholar 

  58. Stanely M.A., Clin Exper Dermatol 27, 571–577, 2002.

    Google Scholar 

  59. Wagner T.L., Ahonen C.L., Couture A.M., Gibson S.J., Miller R.L., Smith R.M., Reiter M.J., Vasilakos J.P., and Tomai M.A., Cellular Immunol 191, 10–19, 1999.

    Google Scholar 

  60. Kim T.S., Kang B.Y., Cho D., and Kim S.H., Immunology 109, 407–414, 2003.

    Google Scholar 

  61. Editorial Nature Med 9, 803, 2003.

  62. Letvin N.L., and Walker B.D., Nature Med 9 861–866, 2003.

    Google Scholar 

  63. Mckay P.F., Lifton M.A., Williams K.C., and Letvin N.L., J Virol 77, 4695–4702, 2003.

    Google Scholar 

  64. Pantaleo G., Demarest J.F., Soudeyns H., Graziosi C., Denis F., Adelsberger J.W., Borrow P., Saag M.S., Shaw G.M., Sekaly R.P., et al, Nature 370, 463–467, 1994.

    Google Scholar 

  65. McMichael A.J. and Hanke T., Nature Med 9 874–880, 2003.

    Google Scholar 

  66. Becker Y. “Modified Viral Proteins, methods for producing them and vaccines containing them”. Filed on 25 September 2003 and has since informally allocated as United States Provisional Application No. 60/505, 615 (Y. Becker, applicant and inventor).

  67. Sabin A.B., Natl Acad Sci USA, 89 8852–8859, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Virology, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.B 12272, Jerusalem, 91120, Israel

    Yechiel Becker

Authors
  1. Yechiel Becker
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, Y. The Changes in the T helper 1 (Th1) and T helper 2 (Th2) Cytokine Balance During HIV-1 Infection are Indicative of an Allergic Response to Viral Proteins that may be Reversed by Th2 Cytokine Inhibitors and Immune Response Modifiers – a Review and Hypothesis. Virus Genes 28, 5–18 (2004). https://doi.org/10.1023/B:VIRU.0000012260.32578.72

Download citation

  • Issue Date: January 2004

  • DOI: https://doi.org/10.1023/B:VIRU.0000012260.32578.72

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • HIV-1 infection
  • allergic response to HIV-1
  • Th1 to Th2 switch
  • Th2 to Th1 reversion
  • Inhibition of JL-4
  • immune response modifiers
  • Modifications in gp120
  • implications for vaccines
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.24.215

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.