Skip to main content
Log in

Interspecific associations in phytosociological data sets: how do they change between local and regional scale?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Interspecific associations detected in phytosociological data sets sampled in local areas can reflect locally specific combinations of environmental factors and may thus differ from the interspecific associations existing on a regional scale. As a result, vegetation units derived from numerical classifications of local data sets can accurately reflect local environmental gradients, but their boundaries or spectra of diagnostic species must be frequently adjusted when transferred to the regional scale. Local vegetation classifications can be useful for some purposes, but regional classifications are superior, as they facilitate communication among the researchers from different areas. We demonstrated changes in interspecific associations between regional and local scale, using a data set of 14 589 relevés of herbaceous vegetation of the Czech Republic, and 16 local subsets of this national data set. We focused on sociological species groups, derived statistically in the national data set. Changes in coherence of these groups when applied to the local data sets were described on the basis of statistical association between the relevés containing some species of these groups and the species belonging vs. not belonging to these groups. The results were summarized using the principal components analysis (PCA). In addition, relevé data sets were compared with respect to presence/absence of sociological species groups, using the principal coordinate analysis (PCoA). The results of PCA and PCoA were compared by Procrustean analysis. Local data sets differed from the national data set to different extent. The national data set was more remote to the local data sets if the analysis focused on the coherence of species group rather than on presence/absence. The species groups from the national data set retained most of their coherence in low-altitude hilly landscapes with thermophilous flora, i.e., the most diverse landscape type of the Czech Republic. On the other hand, many species groups from the national data set could not be recognized in mountainous areas or flat lowlands. These results suggest that interspecific associations existing on regional scale are best reproduced in those local areas which have a high habitat heterogeneity or which have a central position along the major gradients existing on regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen T.F.H. and Hoekstra T.W. 1992. Toward a unified ecology. Columbia University Press, New York.

    Google Scholar 

  • Allen T.F.H. and Starr T.B. 1982. Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago.

    Google Scholar 

  • Bruelheide H. 1997. Using formal logic to classify vegetation. Folia Geobotanica Phytotaxonomica 32: 41–46.

    Google Scholar 

  • Bruelheide H. 2000. A new measure of fidelity and its application to defining species groups. Journal of Vegetation Science 11: 167–178.

    Google Scholar 

  • Bruelheide H. and Chytrý M. 2000. Towards unification of the national vegetation classifications: a comparison of two methods for the analysis of large data sets. Journal of Vegetation Science 11: 295–306.

    Google Scholar 

  • Chytrý M., Exner A., Hrivnák R., Ujházy K., Valachovič M. and Willner W. 2002a. Context-dependence of diagnostic species: A case study of the Central European spruce forests. Folia Geobotanica 37: 403–417.

    Google Scholar 

  • Chytrý M. and Rafajová M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75: 1–15.

    Google Scholar 

  • Chytrý M., Tichý L., Holt J. and Botta-Dukát Z. 2002b. Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79–90.

    Google Scholar 

  • Diekmann M. 1997. The differentiation of alliances in South Sweden. Folia Geobotanica et Phytotaxonomica 32: 193–205.

    Google Scholar 

  • Dierschke H. (Ed.), 1996. Synopsis der Pflanzengesellschaften Deutschlands. Heft 1. Floristisch-soziologische Arbeitsgemeinschaft, Göttingen.

  • Ehrendorfer F. (Ed.), 1973. Liste des Gefäßpflanzen Mitteleuropas. 2nd edition. G. Fischer, Stuttgart.

    Google Scholar 

  • Ejrnaes R., Aude E., Nygaard B. and Münier B. 2002. Prediction of habitat quality using ordination and neural networks. Ecological Applications 12: 1180–1187.

    Google Scholar 

  • Hennekens S.M. and Schaminée J.H.J. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12: 589–591.

    Google Scholar 

  • Jackson D.A. 1995. PROTEST: A PROcrustean Randomization TEST of community environment concordance. Écoscience 2: 297–303.

    Google Scholar 

  • Legendre P. and Legendre L. 1998. Numerical ecology. 2nd English edition. Elsevier, Amsterdam etc.

    Google Scholar 

  • Levin S.A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Google Scholar 

  • Miyawaki A. (Ed.), 1981-1989. Vegetation of Japan. Vols. 1-10. Shibundo, Tokyo.

    Google Scholar 

  • Moravec J. (Ed.), 1998. Přehled vegetace České republiky. Svazek 1. (Vegetation survey of the Czech Republic. Volume 1). Academia, Praha.

  • Mucina L., Grabherr G., Ellmauer T. and Wallnöfer S. (Eds.), 1993. Die Pflanzengesellschaften Österreichs. Teil I-III. G. Fischer, Jena.

    Google Scholar 

  • Oberdorfer E. (Ed.), 1997-1992. Süddeutsche Pflanzengesellschaften. Teil I–IV. 2nd edition. G. Fischer, Jena.

    Google Scholar 

  • Olden J.D., Jackson D.A. and Peres-Neto P.R. 2001. Spatial isolation and fish communities in drainage lakes. Oecologia 127: 572–585.

    Google Scholar 

  • Peres-Neto P.R. and Jackson D.A. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.

    Google Scholar 

  • Peterson D.L. and Parker V.T. (Eds.), 1998. Ecological scale: Theory and application. Complexity in ecological systems Series, Columbia University Press, New York.

  • Podani J. 2000. Introduction to the exploration of multivariate biological data. Backhuys Publishers, Leiden.

    Google Scholar 

  • Rodwell J.S. (Ed.), 1990-2000. British plant communities. Vols. 1-5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodwell J.S., Pignatti S., Mucina L. and Schaminée J.H.J. 1995. European Vegetation Survey: Update on progress. Journal of Vegetation Science 6: 759–762.

    Google Scholar 

  • Schaminée J.H.J., Stortelder A.H.F., Westhoff V., Weeda E.J. and Hommel P.W.F.M. 1995–1999. De vegetatie van Nederland. Deel 1–5. Opulus Press, Uppsala.

    Google Scholar 

  • Skalický V. 1988. Regionálně fytogeografické členění (Regional phytogeographical division). pp. 103–121. In: Hejný S. and Slavík B. (Eds.), Květena České socialistické republiky (Flora of the Czech Socialistic Republic). Vol. 1. Academia, Praha.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1995. Biometry. 3rd edition. W. H. Freeman and Company, New York.

    Google Scholar 

  • StatSoft, Inc. 2001. STATISTICA (data analysis software system). Version 6. www.statsoft.com.

  • ter Braak C.J.F. and Šmilauer P. 1998. CANOCO Reference Manual and User´s Guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Centre for Biometry, Wageningen.

    Google Scholar 

  • Tichý L. 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453.

    Google Scholar 

  • Tüxen R. (Ed.), (1971–1986): Bibliographia phytosociologica syntaxonomica. Vol. 1–39. J. Cramer, Lehre etc.

  • Valachovič M., Ot'ahel'ová H., Stanová V. and Maglocký Š. (1995): Rastlinné spoločenstvá Slovenska 1. Pionierska vegetácia (Plant communities of Slovakia 1. Pioneer vegetation). Veda, Bratislava.

  • Wiens J.A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Kuželová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuželová, I., Chytrý, M. Interspecific associations in phytosociological data sets: how do they change between local and regional scale?. Plant Ecology 173, 247–257 (2004). https://doi.org/10.1023/B:VEGE.0000029330.38055.8e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VEGE.0000029330.38055.8e

Navigation