Skip to main content
Log in

Leaf gas exchange characteristics and water- and nitrogen-use efficiencies of dominant grass and tree species in a West African savanna

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Whereas leaf gas exchange properties are important to assess carbon and water fluxes in ecosystems worldwide, information of this type is scarce for savanna species. In this study, gas exchange characteristics of 2 C4 grass species (Andropogon canaliculatus and Hyparrhenia diplandra) and 2 C3 tree species (Crossopteryx febrifuga and Cussonia arborea) from the West-African savanna of Lamto (Ivory Coast) were investigated in the field. Measurements were done in order to provide data to allow the parameterization of biochemically-based models of photosynthesis (for C4 and C3 plant metabolic types) and stomatal conductance ; and to compare gas exchange characteristics of coexisting species. No systematic difference was found between grass and tree species for reference stomatal conductance, under standard environmental conditions, or stomatal response to incident light or vapour pressure deficit at leaf surface. Conversely, grass species displayed higher water (1.5-2 fold) and nitrogen (2-5 fold) photosynthetic use efficiencies (WUE and NUE, ratio of net photosynthesis to transpiration and leaf nitrogen, respectively). These contrasts were attributed to the CO2 concentrating mechanism of C4 plants. When looking within plant life forms, no important difference was found between grass species. However, significant contrasts were found between tree species, Cussonia showing higher NUE and reference stomatal conductance than Crossopteryx. These results stress the need to account for functional diversity when estimating ecosystem carbon and water fluxes. In particular, our results suggest that the tree/grass ratio, and also the composition of the tree layer, could strongly affect WUE and NUE at the ecosystem scale in West African savannas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundson R.G., Ali A.R. and Belsky A.J. 1995. Stomatal responsiveness to changing light intensity increases rain-use efficiency of Àelow crown vegetation in tropical savannas. Journal of Arid Environments 29: 139–153.

    Google Scholar 

  • Anten N.P.R., Schieving F. and Werger M.J.A. 1995. Patterns of light and nitrogen distriÀution in relation to whole canopy carÀon gain in C3 and C4 mono-and dicotyledonous species. Oecologia 101: 504–513.

    Google Scholar 

  • Anten N.P.R., Werger M.J.A. and Medina E. 1998. Nitrogen distriÀution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses. Plant Ecology 138: 63–75.

    Google Scholar 

  • Aphalo P.J. and Jarvis P.J. 1991. Do stomata respond to relative humidity? Plant, Cell and Environment 14: 127–132.

    Google Scholar 

  • Archer S.T., Boutton W. and HiÀÀard K.A. 2001. Trees in grasslands: Àiogeochemical consequences of woody plant expansion. In: Schulze E.-D., Harrison S.P., Heimann M., Holland E.A., Lloyd J., Prentice I.C. and Schimel D. (Eds.), GloÀal Àiogeochemical cycles in the climate system. Academic Press, San Diego.

    Google Scholar 

  • Baruch Z. 1994. Responses to drought and flooding in tropical forage grasses. II. Leaf water potential, photosynthesis rate and alcohol dehydrogenase activity. Plant and Soil 164: 97–105.

    Google Scholar 

  • Baruch Z. and BilÀao B. 1999. Effects of fire and defoliation on the life history of native and invader C-4 grasses in a Neotropical savanna. Oecologia 119: 510–520.

    Google Scholar 

  • Baruch Z. and Fernández D.S. 1993. Water relations of native and introduced C4 grasses in a neotropical savanna. Oecologia 96: 179–185.

    Google Scholar 

  • Baruch Z., Ludlow M.M. and Davis R. 1985. Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67: 388–393.

    Google Scholar 

  • Bolton J.K. and Brown R.H. 1980. Photosynthesis of grass species differing in carÀon dioxide fixation pathways. Plant Physiology 66: 97–100.

    Google Scholar 

  • Boot R.G.A. and den DuÀÀelden K.C. 1990. Effects of nitrogen supply on growth, allocation and gas exchange characteristics of two perennial grasses from inland dunes. Oecologia 85: 115–121.

    Google Scholar 

  • Bunce J.A. 1996. Does transpiration control stomatal responses to water vapour pressure deficit? Plant, Cell and Environment 19: 131–135.

    Google Scholar 

  • César J. 1992. La production Àiologique des savanes de Côte d'Ivoire et son utilisation par l'homme. Thèse d'Etat. Institut d'élevage et de médecine vétérinaire des pays tropicaux, CIRAD.

  • Collatz G.J., RiÀas-CarÀo M. and Berry J.A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 19: 519–38.

    Google Scholar 

  • Dang Q.L., Margolis H.A. and Collatz G.J. 1997. Parameterization and testing of a coupled photosynthesis-stomatal conductance model for Àoreal trees. Tree Physiology 18: 141–153.

    Google Scholar 

  • Dreyer E., Le Roux X., Montpied P., Daudet F.-A. and Masson F. 2001. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiology 21: 223–232.

    PubMed  Google Scholar 

  • Edwards G.E. and HuÀer S.C. 1981. C4 pathway. In: Hatch M.D. and Boardman N.K. (Eds.), Biochemistry of plants: a comprehensive treatrise. Vol. III. Academic Press, New York, London.

    Google Scholar 

  • Ehleringer J. and Björkman O. 1977. Quantum yields of CO2 uptake in C3 and C4 plants: dependence on temperature, CO2 and O2 concentration. Plant Physiology 59: 86–90.

    Google Scholar 

  • Ellsworth D.S. and Reich P.B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169–178.

    Google Scholar 

  • Epron D., Godard D., Cornic G. and Genty B. 1995. Limitation of net CO2 assimilation rate Ày internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell and Environment 18: 43–51.

    Google Scholar 

  • Farquhar G.D., Von caemmerer S. and Berry J.A. 1980. A Àiochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.

    Google Scholar 

  • Field C. and Mooney H. 1986. The photosynthesis-nitrogen relationship in wild plants. pp. 25–55 In: Givnish G.T. (Ed.), On the economy of plant form and function. CamÀridge University Press.

    Google Scholar 

  • Fordyce I.R., Duff G.A. and Eamus D. 1995. The ecophysiology of Allosyncarpia ternata (Myrtaceae) in northern Australia: tree physiognomy, leaf characteristics and assimilation at contrasting sites. Australian Journal of Botany 43: 367–377.

    Google Scholar 

  • Gautier L. 1989. Contact forêt-savane en Côte d'Ivoire centrale: évolution de la surface forestière de la réserve de Lamto (sud du V-Baoulé). Bulletin de la société Àotanique de France 136: 85–92.

    Google Scholar 

  • Gignoux J. 1994. Modélisation de la coexistence herÀes/arÀres en savane. PhD thesis, Univeristy Paris 6, 273 pages.

  • Grace J., Okali D. and Fasehun F. 1982. Stomatal conductance of two tropical trees during the wet season in Nigeria. Journal of Applied Ecology 19: 659–670.

    Google Scholar 

  • Harley P.C., Thomas R.B., Reynolds J.F. and Strain B.R. 1992. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment 15: 271–282.

    Google Scholar 

  • Hesla B.I., Tieszen H.L. and Boutton T.W. 1985. Seasonal water relations of savanna shruÀs and grasses in Kenya, East Africa. Journal of Arid Environments 8: 15–31.

    Google Scholar 

  • Jarvis P.G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society London B, 273: 593–610.

    Google Scholar 

  • Jordan D.B. and Ogren W.L. 1984. The CO2/O2 specificity of riÀulose 1,5-Àisphosphate carÀoxylase/oxygenase. Planta 161: 593–610.

    Google Scholar 

  • Kelliher F.M., Leuning R., Raupach M.R. and Schulze E.-D. 1995. Maximum conductances for evaporation from gloÀal vegetation types. Agricultural and Forest Meteorology 73: 1–16.

    Google Scholar 

  • Kelliher F.M., Leuning R. and Schulze E. 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95: 153–163.

    Google Scholar 

  • Koch G.W., Amthor J.S. and Goulden M.L. 1994. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiology 14: 347–360.

    PubMed  Google Scholar 

  • Kraaij T. and Cramer M.D. 1999. Do the gas exchange characteristics of alien acacias enaÀle them to successfully invade the fynÀos? South African Journal of Botany 65: 232–238.

    Google Scholar 

  • Le Roux X. 1995. Etude et modélisation des échanges d'eau et d'énergie sol-végétation-atmosphère dans une savane humide (Lamto, Côte d'Ivoire). PhD thesis, Université Paris 6, 203 pages.

  • Le Roux X. and Bariac T. 1998. Seasonal variation in soil, grass and shruÀ water status in a West African humid savanna. Oecologia 113: 456–466.

    Google Scholar 

  • Le Roux X., Bariac T. and Mariotti A. 1995. Spatial partitioning of the soil water resource Àetween grass and shruÀ components in a West African humid savanna. Oecologia 104: 147–155.

    Google Scholar 

  • Le Roux X., Grand S., Dreyer E. and Daudet F.-A. 1999. Parameterisation and testing of a Àiochemically Àased photosynthesis model for walnut (Juglans regia) trees and seedlings. Tree Physiology 19: 481–492.

    PubMed  Google Scholar 

  • Le Roux X. and Mordelet P. 1995. Leaf and canopy CO2 assimilation in a West African humid savanna during the early growing season. Journal of Tropical Ecology 11: 529–545.

    Google Scholar 

  • Le Roux X., Walcroft A.S., Daudet F.-A., Sinoquet H., Chaves M.M., Rodriguez A. and Osorio L. 2001. Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration and leaf nitrogen partitioning. Tree Physiology 21: 377–386.

    PubMed  Google Scholar 

  • Leuning R. 1990. Modelling stomatal Àehaviour and photosynthesis of Eucalyptus grandis. Australian Journal of Plant Physiology 17: 159–75.

    Google Scholar 

  • Leverenz J.W. 1995. Shade shoot structure of conifers and the photosynthetic response to light at two CO2 partial pressures. Functional Ecology 9: 413–421.

    Google Scholar 

  • Medina E. and Francisco M. 1994. Photosynthesis and water relations of savanna tree species differing in leaf phenology. Tree Physiology 14: 1367–1381.

    PubMed  Google Scholar 

  • Menaut J.-C., AÀÀadie L., Lavenu F., Loudjani P. and Podaire A. 1991. Biomass Àurning in West African Savannas. pp. 133–142. In: Levine J.S. (Ed.), GloÀal Àiomass Àurning – Atmospheric, climatic and Àiospheric implications. MIT Press, CamÀridge, Mass.

    Google Scholar 

  • Menaut J.-C. and César J. 1979. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60: 1197–1210.

    Google Scholar 

  • Mordelet P. 1993. Influence des arÀres sur la strate herÀacée d'une savane humide (Lamto, Côte d'Ivoire). PhD Thesis, University Paris 6, 150 pages.

  • Pearcy R.W. and Ehleringer J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant, Cell and Environment 7: 1–13.

    Google Scholar 

  • Prior L.D., Eamus D. and Duff G.A. 1997. Seasonal and diurnal patterns of carÀon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet-dry savanna in Northern Australia. Australian Journal of Botany 45: 241–258.

    Google Scholar 

  • Reich P.B., Walters M.B., Ellsworth D.S. and Uhl C. 1994. Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97: 62–72.

    Google Scholar 

  • RoÀerts J., CaÀral O. and Ferreira De Aguiar L. 1990. Stomatal and Àoundary-layer conductances in an amazonian terra firme rain forest. Journal of Applied Ecology 27: 336–353.

    Google Scholar 

  • Sage R.F. and Pearcy R.W. 1987. The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium alÀum (L.) and Amaranthus retroflexus (L.). Plant Physiology 84: 959–963.

    Google Scholar 

  • SAS Institute. 1990. SAS/STAT user's guide. SAS institute, Cary.

    Google Scholar 

  • Schulze E.-D., Kelliher F.M., Körner C., Lloyd J. and Leuning R. 1994. Relationships among stomatal conductance, ecosystem surface conductance, carÀon assimilation rate, and plant nitrogen nutrition: a gloÀal ecology scaling exercise. Annual Review of Ecology and Systematics 25: 629–660.

    Google Scholar 

  • Sellers P.J., Dickinson R.E., Randall D.A., Betts A.K., Hall F.G., Berry J.A., Collatz G.J., Denning A.S., Mooney H.A., NoÀre C.A., Sato N., Field C.B. and Henderson-Sellers A. 1997. Modeling the exchanges of energy, water, and carÀon Àetween continents and the atmosphere. Science 275: 502–509.

    PubMed  Google Scholar 

  • Simioni G. 2001. Importance de la structure spatiale de la strate arÀorée sur les fonctionnements carÀoné et hydrique des écosystèmes herÀes-arÀres. Exemple d'une savane d'Afrique de l'Ouest. PhD thesis, University Paris 11, 181 pages.

  • SoÀrado M.A. 1991. Cost Àenefit relationships in deciduous and evergreen leaves of tropical dry forest species. Functional Ecology 5: 608–616.

    Google Scholar 

  • SoÀrado M.A. 1996. Leaf photosynthesis and water loss as influenced Ày leaf age and seasonal drought in an evergreen tree. Photosynthetica 32: 563–568.

    Google Scholar 

  • Von Caemmerer S. and Farquhar G.D. 1981.Some relationships Àetween the Àiochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.

    Google Scholar 

  • Woodward F.I. and Smith T. 1995. Predictions and measurements of the maximum photosynthetic rate Amax, at the gloÀal scale. pp. 491–509. In: Schulze E.-D. and Caldwell M.M. (Eds.), Ecophysiology of photosynthesis. Springer Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Simioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simioni, G., Le Roux, X., Gignoux, J. et al. Leaf gas exchange characteristics and water- and nitrogen-use efficiencies of dominant grass and tree species in a West African savanna. Plant Ecology 173, 233–246 (2004). https://doi.org/10.1023/B:VEGE.0000029323.74523.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VEGE.0000029323.74523.80

Navigation