Skip to main content
Log in

Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Ranunculus peltatus Schrank is an aquatic macrophyte spreading in northeastern France. As with other Ranunculus species, its growth demonstrates considerable plasticity. A preliminary understanding of its development and precise adaptive strategy is possible through functional ecology. The present study took morphological traits into account in order to analyse R. peltatus' development and morphological plasticity in relation to environmental parameters. During the five-month growing season, field measurements of ten different morphological traits were performed monthly at twelve sampling sites presenting various physical and chemical characteristics. Three overall growth stages occurred between April and August 2000: a stage of elongation of the main stem, a stage of branching and flowering and a stage of decline associated with vegetative dispersion. The sampling sites were defined according to environmental parameters and divided into three groups corresponding to three morphologically different R. peltatus populations. Plants in upstream, nutrient-poor, undisturbed sites were small and achieved little sexual reproduction. Plants in nutrient-rich, undisturbed sites had long shoots and were branched. Plants in weakly shaded, disturbed sites were small but produced many flowers. Correlations between morphological traits and environmental parameters showed significant relationships between chemical parameters and some characteristic vegetative growth traits. Physical environmental parameters were found to be less well correlated with morphological traits than the chemical parameters. The phenology and morphological plasticity of R. peltatus confer competitive advantages that could explain its ability to spread in some circumstances. Finally, the previous classification of R. peltatus as a Grime CSR species is discussed in relation to its plasticity. According to its morphological characteristics, R. peltatus tended indeed to adopt a C-strategy in nutrient-rich undisturbed sites, a S-strategy in nutrient-poor undisturbed sites and a R-strategy in disturbed sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy V.J. 1994. Functional ecology of euhydrophyte communities of European riverine wetland ecosystems, PhD dissertation, University of Glasgow, Scotland.

    Google Scholar 

  • Abernethy V.J. and Willby N.J. 1999. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140(2): 177–190.

    Google Scholar 

  • AFNOR 1986. Eaux. Méthodes d'essai. Ed. AFNOR, Paris.

    Google Scholar 

  • Barrat-Segretain M.H. 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetation 123: 13–37.

    Google Scholar 

  • Barrat-Segretain M.H. 2001. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat. Freshwater Biology 46: 935–945.

    Google Scholar 

  • Barrat-Segretain M.H., Bornette G. and Hering-Vilas-Bôas A. 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquatic Botany 60: 201–211.

    Google Scholar 

  • Boeger R. 1992. The influence of substrate and water velocity on growth of Ranunculus aquatilis L. Aquatic Botany 42: 351–359.

    Google Scholar 

  • Bornette G., Henry C., Barrat M.H. and Amoros C. 1994. Theoretical habitat templets, species traits, and species richness: aquatic macrophytes in the Upper Rhône River and its floodplain. Freshwater Biology 31: 487–505.

    Google Scholar 

  • Combroux I., Bornette G., Willby N.J. and Amoros C. 2002. Regenerative strategies of aquatic plants in disturbed habitats: the role of propagule banks. Archiv für Hydrobiologie 152: 215–235.

    Google Scholar 

  • Cook C.D.K. 1966. A monographic study of Ranunculus subgenus Batrachium (D.C.) A. Gray. Mittelungen der Botanischen Staatssammlung und des Instituts für systematische Botanik der Universität München 6: 47–237.

    Google Scholar 

  • Dalhgren G. 1993. Ranunculus penicillatus in Nordern. Nordic Journal of Botany 2: 51–73.

    Google Scholar 

  • Dawson F.H. 1976. The annual production of aquatic macrophyte Ranunculus penicillatus var. calcareus (R.W. Butcher) C.D.K. Cook. Aquatic Botany 2: 51–73.

    Google Scholar 

  • Dawson F.H. 1980. Flowering of Ranunculus penicillatus (Dum.) Bab. var. calcareus (R.W. Butcher) C.D.K. Cook in the Piddle river (Dorset, England). Aquatic Botany 9: 145–157.

    Google Scholar 

  • Dawson F.H. and Kern-Hansen U. 1979. The effect of natural and artificial shade on the macrophytes of lowland streams and the use of shade as a management technique. Internationale Revue der gesamten Hydrobiology 64: 437–455.

    Google Scholar 

  • Décamps O. 1985. Germination et croissance de deux Renoncules aquatiques. Annales de Limnologie 21: 13–18.

    Google Scholar 

  • Dufayt O. 2000. Aspects biologiques et modélisation du cours d'eau: Etude expérimentale et modélisation du développement de la Renoncule flottante (Ranunculus fluitans) dans la Semois. PhD Dissertation, Fondation Universitaire Luxembourgeoise.

  • Eichenberger E. 1983. The effect of seasons on the growth of Ranunculus fluitans Lam. In: International Symposium on aquatic Macrophytes. Nijmegen, The Netherlands, pp. 63–66.

  • Eichenberger E. and Weilenmann H.U. 1982. The growth of Ranunculus fluitans LAM. in artificial canals. In: Symoens J.J., Hooper S.S. and Compère P. (Eds.), Studies on aquatic vascular plants. Royal Botanical Society of Belgium, Brussels, pp. 324–332.

    Google Scholar 

  • Elger A., Barrat-Segretain M.H. and Amoros C. 2002. Plant palatability and disturbance level in aquatic habitats: an experimental approach using the snail Lymnaea stagnalis (L.). Freshwater Biology 47: 931–940.

    Google Scholar 

  • Grasmück N., Haury J., Léglize L. and Muller S. 1993. Analyse de la végétation aquatique fixée des cours d'eau lorrains en relation avec les paramètres d'environnement. Annales de limnologie 29: 223–237.

    Google Scholar 

  • Greulich S. and Bornette G. 1999. Competitive abilities and related strategies in four aquatic plant species from an intermediately disturbed habitat. Freshwater Biology 41: 493–506.

    Google Scholar 

  • Grime J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

    Google Scholar 

  • Grime J.P., Hodgson J.G. and Hunt R. 1988. Comparative Plant Ecology: A Functional Approach to Common British Species. Unwin Hyman, London.

    Google Scholar 

  • Haslam S.M. 1978. River plants. The Macrophytic Vegetation of Watercourses. Cambridge University Press, Cambridge.

    Google Scholar 

  • Henry C.P., Amoros C. and Bornette G. 1996. Species traits and recolonization processes after flood disturbance in riverine macrophytes. Vegetation 122: 13–27.

    Google Scholar 

  • Kautsky L. 1987. Life-cycle of three populations of Potamogeton pectinatus L. at different degrees of wave exposure in the Askö area, northern Baltic proper. Aquatic Botany 27: 177–186.

    Google Scholar 

  • Kautsky L. 1988. Life-strategies of aquatic soft bottom macrophytes. Oikos 53: 126–135.

    Google Scholar 

  • Keddy P.A. 1990. Competitive Hierarchies and Centrifugal Organisation in Plant Communities. In: Grace J.B. and Tilman D.A. (Eds.), Perspectives on Plant Competition. Academic Press, London, pp. 265–290.

    Google Scholar 

  • Ladle M. and Bass J.A.B. 1981. The ecology of a small chalk stream and its response to drying drought conditions. Archiv für Hydrobiologie 90: 448–466.

    Google Scholar 

  • Mabry C., Ackerly D. and Gerhardt F. 2000. Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. Journal of Vegetation Science 11: 213–224.

    Google Scholar 

  • MacArthur R.H. and Wilson R.D. 1967. A Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Muller S. 1990. Une séquence de groupements végétaux bioindicateurs d'eutrophisation croissante des cours d'eau faiblement minéralisés des Basses Vosges gréseuses du Nord. Comptes-rendus de l'Académie des Sciences de Paris 310: 509–514.

    Google Scholar 

  • Murphy K.J., Rorslett B. and Springel I. 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquatic Botany 36: 303–323.

    Google Scholar 

  • Schlichting C.D. 1986. The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics 17: 667–693.

    Google Scholar 

  • Shipley B. and Keddy P.A. 1988. The relationship between relative growth rate and sensitivity to nutrient stress in twenty-eight species of emergent macrophytes. Journal of Ecology 76: 1101–1110.

    Google Scholar 

  • Shipley B., Keddy P.A., Moore D.R.J. and Lemky K. 1989. Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology 77: 1093–1110.

    Google Scholar 

  • Southwood T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 3–18.

    Google Scholar 

  • Spink A., Murphy K. and Westlake D. 1997. Distribution and environmental regulation of species of Ranunculus subgenus Batrachium in British rivers. Archiv für Hydrobiologie 139: 509–525.

    Google Scholar 

  • Tenenhaus M. and Young F.W. 1985. An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika 50: 91–119.

    Google Scholar 

  • Thiébaut G. and Muller S. 1998. Les communautés de macrophytes aquatiques comme descripteurs de la qualité de l'eau: exemple de la rivière Moder. Annales de Limnologie 34: 141–153.

    Google Scholar 

  • Thiébaut G. and Muller S. 1999. A macrophyte communities sequence as an indicator of eutrophication and acidification levels in weakly mineralized streams in northeastern France. Hydrobiologia 410: 17–24.

    Google Scholar 

  • Thioulouse J., Chessel D., Dolédec S. and Olivier J.M. 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.

    Google Scholar 

  • Van T.K., Wheeler G.S. and Center T.D. 1998. Competitive interactions between Hydrilla (Hydrilla verticillata) and Vallisneria (Vallisneria americana) as influenced by insect herbivory. Biological Control 11: 185–192.

    Google Scholar 

  • Volder V., Bonis A. and Grillas P. 1997. Effects of drought and flooding on the reproduction of an amphibious plant, Ranunculus peltatus. Aquatic Botany 58: 113–120.

    Google Scholar 

  • Webster S.D. 1988. Ranunculus penicillatus (Dumort.) Bab. in Great Britain and Ireland. Watsonia 17: 1–22.

    Google Scholar 

  • Westlake D.F. 1973. Aquatic macrophytes in rivers: a review. Polskie Archiwum Hydrobiologii 20: 31–40.

    Google Scholar 

  • Wiegleb G. and Brux H. 1991. Comparison of life history characters of broad-leaved species of the genus Potamogeton L. I. General characterisation of morphology and reproductive strategies. Aquatic Botany 39: 131–146.

    Google Scholar 

  • Willby R.L., Cranston L.E. and Darby E.J. 1998. Factors governing macrophyte status in Hampshire chalk streams: implications for catchment management. Journal of the Chartered Institution of Water and Environmental Management 12: 179–187.

    Google Scholar 

  • Winer B.J. 1962. Statistical Principles in Experimental Design. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cendrine Garbey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbey, C., Thiébaut, G. & Muller, S. Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecology 173, 125–137 (2004). https://doi.org/10.1023/B:VEGE.0000026336.44576.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VEGE.0000026336.44576.ff

Navigation