Advertisement

Ukrainian Mathematical Journal

, Volume 55, Issue 11, pp 1885–1893 | Cite as

Criterion for the Uniqueness of a Solution of the Darboux–Protter Problem for Degenerate Multidimensional Hyperbolic Equations

  • S. A. Aldashev
Article
  • 16 Downloads

Abstract

We obtain a criterion for the uniqueness of a regular solution of the Darboux–Protter problem for degenerate multidimensional hyperbolic equations.

Keywords

Regular Solution Hyperbolic Equation Multidimensional Hyperbolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. A. Aldashev, Boundary-Value Problems for Multidimensional Hyperbolic and Mixed Equations [in Russian], Gylym, Alma-Ata (1994).Google Scholar
  2. 2.
    S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  3. 3.
    S. A. Tersenov, Introduction to the Theory of Equations Degenerating on the Boundary [in Russian], Novosibirsk University, Novosibirsk (1973).Google Scholar
  4. 4.
    A. M. Nakhushev, Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1985).Google Scholar
  5. 5.
    S. A. Aldashev, “On Darboux problems for one class of multidimensional hyperbolic equations,” Differents. Uravn., 34, No. 1, 1–5 (1998).Google Scholar
  6. 6.
    V. I. Smirnov, A Course of Higher Mathematics [in Russian], Vol. 4, Part 2, Nauka, Moscow (1981).Google Scholar
  7. 7.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1976).Google Scholar
  8. 8.
    Sh. T. Nurzhanov, “On nonuniqueness of a solution of the Darboux-Protter problem for degenerate multidimensional hyperbolic equations,” Vestn. Kazakh. Univ, Ser. Mat. Mekh., Informat., No. 2, 117–122 (1999).Google Scholar
  9. 9.
    S. A. Aldashev, “On criteria for the uniqueness of the Darboux-Protter problem for one class of multidimensional hyperbolic equations,” in: “Nonlocal Boundary-Value Problems and Related Problems in Mathematical Biology, Computer Science, and Physics” [in Russian], IPMA KBNTs RAN, Nalchik (2001).Google Scholar
  10. 10.
    S. A. Aldashev, “A criterion for the uniqueness of a solution of the Darboux-Protter problem for degenerate multidimensional hyperbolic equations,” Dokl. NAN RK, No. 3, 5–8 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • S. A. Aldashev
    • 1
  1. 1.Kazakhstan Academy of Transport and CommunicationsAlma-Ata

Personalised recommendations