Skip to main content
Log in

Evaluation of Nanoscale Friction Depth Distribution in ZDDP and MoDTC Tribochemical Reacted Films Using a Nanoscratch Method

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The distributions of local friction coefficients relative to the depth and near the surface of MoDTC/ZDDP and ZDDP tribofilms were successfully evaluated by using a nanoscratch method combined with in situ AFM observation. It was found that both tribofilms were friction-functionally graded materials. The friction coefficients decreased from 0.35 to 0.16 with a decrease in the scratch depth from 60 to 10 nm. It was observed that the MoDTC/ZDDP and ZDDP tribofilms possessed different shear strength levels near the surface as evidenced by the different valley-shaped friction coefficient distributions they exhibited for scratch depths ranging from 2 to 10 nm. Based on our recent nanomechanical measurements, this observation indicated that both tribofilms possessed an ultra-low friction inner skin layer at a depth of about 10 nm below the surface. Most importantly, the inner skin layer of the MoDTC/ZDDP tribofilm possessed a lower friction coefficient than that of the ZDDP tribofilm (0.084 versus 0.104) and was thinner (about 3.2 nm versus 6.4 nm). These results thus revealed that the reduction in friction attributed to the MoDTC additive originates from the different friction behavior of the inner skin layers of the MoDTC/ZDDP and ZDDP tribofilms. These nanoscratch results agree with the findings of our recent work on detecting differences in mechanical properties between these tribofilms by nanoindentation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Isoyama and T. Sakurai, Tribol. Int. 7 (1974) 151.

    Google Scholar 

  2. J.B. Retzloff, B.T. Davis and J.M. Pietras, Lub. Eng. 35 (1979) 568.

    Google Scholar 

  3. P. Zheng, X. Han and R. Wang, STLE Trans. 31 (1986) 22.

    Google Scholar 

  4. Y. Yamamoto and S. Gondo, Wear 112 (1986) 79.

    Google Scholar 

  5. Y. Yamamoto and S. Gondo, Tribol. Trans. 32 (1989) 251.

    Google Scholar 

  6. H. Spedding and R.C. Watkins, Tribol. Int. 15 (1982) 9.

    Google Scholar 

  7. P.A. Willermet, D.P. Dailey, R.O. Carter III, P.J. Schmitz and W. Zhu, Tribol. Int. 28 (1995) 177.

    Google Scholar 

  8. K. Kubo, M. Kibukawa and Y. Shimakawa, IMEchE, C 68/85 (1985) 121.

  9. M. Kano, Y. Yasuda and J. Ye, in: Proc. 2nd World Tribol. Congress, Vienna, 2001 (ATS, 2001) 342.

  10. I. Feng, W. I. Perilstein and M. R. Adams, ASLE Trans. 6 (1963) 60.

    Google Scholar 

  11. H. Isoyama and T. Sakurai, Tribol. Int. 7 (1974) 51.

    Google Scholar 

  12. S. Gondo and M. Konishi, Wear 120 (1987) 51.

    Google Scholar 

  13. S. Korcek, R. Jensen, M. Johnson and E. Clausing, in: Proc. Int. Tribol. Conference, Yokohama, 1995 (JST, Tokyo, 1996) p. 733.

    Google Scholar 

  14. M. Muraki, Y. Yanagi and K. Sakaguchi, Tribol. Int. 30 (1996) 69.

    Google Scholar 

  15. J.M. Martin, J.L. Mansot, I. Berbezier and M. Belin, Wear 197 (1996) 335.

    Google Scholar 

  16. M. Kasrai, J.N. Cutler, K. Gore, G. Canning, G.M. Bancroft and K.H. Tan, Tribol. Trans. 41 (1998) 69.

    Google Scholar 

  17. C. Grossiord, K. Varlot, J.M. Martin, T. Le Mogne, C. Esnouf and K. Inoue, Tribol. Int. 31 (1998) 737.

    Google Scholar 

  18. C. Grossiord, J.M. Martin, T. Le Mogne, K. Inoue and J. Igarashi, J. Vac. Sci. Technol. A 17 (1999) 884.

    Google Scholar 

  19. C. Grossiord, J.M. Martin, K. Varlot, B. Vacher, T. Le Mogne and Y. Yamada, Tribol. Lett. 8 (2000) 203.

    Google Scholar 

  20. Z. Yin, M. Kasrai, G.M. Bancroft, K.F. Laycock and K.H. Tan, Tribol. Int. 26 (1993) 383.

    Google Scholar 

  21. M. Fuller, Z. Yin, M. Kasrai, G.H. Bancroft, K.F. Laycock and K.H. Tan, in: Proc. Int. Tribol. Conference, Yokohama, 1995 (JST, Tokyo, 1996) p. 113.

    Google Scholar 

  22. J. Ye, M. Kano and Y. Yasuda, Tribol. Lett. 13 (2002) 41.

    Google Scholar 

  23. O.L. Warren, J.F. Graham, P.R. Norton, J.E. Houston and T.A. Milchaske, Tribol. Lett. 4 (1998) 189.

    Google Scholar 

  24. J.F. Graham, C. McCague and P.R. Norton, Tribol. Lett. 6 (1999) 149.

    Google Scholar 

  25. S. Bec and A. Tonck, in: Third Body Concept: Interpretation of Tribological Phenomena, Proceeding of the 22nd Leeds–Lyon Symposium, Lyon, France, 5–8 September 1995.

  26. S. Bec, A. Tonck and J.M. Georges, R.C. Coy, J.C. Bell and G.W. Roper, Proc. R. Soc. Lond. A 455 (1999) 4181.

    Google Scholar 

  27. M. Aktary, M.T. McDermott and G.A. McAlpine, Tribol. Lett. 12 (2002) 155.

    Google Scholar 

  28. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd edn, (McGraw-Hill Book Company, Inc., New York, 1970).

    Google Scholar 

  29. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  30. J. Ye, M. Kano and Y. Yasuda, in: Proc. 2nd Word Tribol. Congress, Vienna, 2001 (ATS, 2001) p. 315.

  31. J. Ye, M. Kano and Y. Yasuda, Tribotest 9 (2002) 13.

    Google Scholar 

  32. K.D. Bronsema, J.L. DeBoer and F. Jellinek, Z. Anorg. Allg. Chem. 540 (1986) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Kano, M. & Yasuda, Y. Evaluation of Nanoscale Friction Depth Distribution in ZDDP and MoDTC Tribochemical Reacted Films Using a Nanoscratch Method. Tribology Letters 16, 107–112 (2004). https://doi.org/10.1023/B:TRIL.0000009720.47177.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TRIL.0000009720.47177.f2

Navigation