Skip to main content
Log in

Catalytic Growth of Structured Carbon via the Decomposition of Chlorobenzene over Ni/SiO2

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of highly ordered carbonaceous materials, including carbon nanofibers, has been the subject of a disparate and burgeoning literature over the past decade. The growth of carbon nanofibers by an atypical catalytic route, the decomposition of chlorobenzene over (10%w/w) Ni/SiO2, is considered in this paper. The reaction of chlorobenzene with hydrogen in the temperature range 550–700 °C also generated benzene via hydrodechlorination and a volatile component that results from catalytic hydrocracking/hydrogenolysis, The characteristics of the carbonaceous product are illustrated through a combination of high resolution transmission electron microscopy (HRTEM) and temperature programmed oxidation (TPO). The response of carbon yield and structural order to varying reaction time (up to 4 h on-stream) and temperature are presented and discussed. Under identical reaction conditions, the chlorobenzene feed delivered appreciably higher carbon yields than that recorded for the decomposition of benzene while the carbon growth in the former case was significantly more ordered. These findings are discussed in terms of Cl/catalyst interaction(s) and metal site restructuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.P. Dravid, X. Lin, Y. Wang, A. Lee, J.B. Ketterson and R.P.H. Chang, Science 259 (1993) 1601.

    Google Scholar 

  2. S. Iijima, Nature 354 (1991) 56.

    Google Scholar 

  3. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj and M. Nath, Chem. Phys. Chem. 2 (2001) 78.

    Google Scholar 

  4. S. Liu, X. Tang, L. Yin, Y. Koltypin and A. Gedanken, J. Mater. Chem. 10 (2000) 1271.

    Google Scholar 

  5. S. Iijima, Nature 354 (1991) 56.

    Google Scholar 

  6. P.A. Gordon and R.B. Saeger, Ind. Eng. Chem. Res. 38 (1999) 4647.

    Google Scholar 

  7. P. Chen, X. Wu, J. Lin and K.L. Tan, Science 285 (1999) 91.

    Google Scholar 

  8. F. Salman, C. Park and R.T.K. Baker, Catal. Today 385 (1999) 1999.

    Google Scholar 

  9. C.N.R. Rao, J. Mater. Chem. 9 (1999) 1.

    Google Scholar 

  10. K.P. de Jong, J.W. Geus, Catal. Rev.-Sci. Eng. 42 (2000) 481.

    Google Scholar 

  11. M.S. Hoogen and, R.A.G.M.M. van Leeuwarden, G.J.B. van Breda, A. Broersma, A.J. van Dillen and J.W. Geus, in: Preparation of Catalysts VI, ed.G. Poncelet (Elsevier, Amsterdam, 1995, p.263).

    Google Scholar 

  12. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature 386 (1997) 377.

    Google Scholar 

  13. K.D. Chowdhury, J.B. Howard and J. Vandersande, J. Mater. Res. 11 (1996) 341.

    Google Scholar 

  14. H. Richter, K. Hernadi, R. Caudano, A. Fonseca, H.-N. Migeon, J.B. Nagy, S. Schneider, J. Vandooren and P.-J. Van Tiggelen, Carbon 34 (1996) 427.

    Google Scholar 

  15. P.M. Ajayan, Chem. Rev. 99 (1999) 1787.

    Google Scholar 

  16. N. Hatta and K. Murata, Chem. Phys. Lett. 217 (1994) 398.

    Google Scholar 

  17. S. Subramoney, Adv. Mater. 10 (1998) 1157.

    Google Scholar 

  18. T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220.

    Google Scholar 

  19. R.T.K. Baker and P.S. Harris, in: Chemistry and Physics of Carbon, Vol. 14, eds. P.L. WalkerJr., P.A. Thrower (Marcel Dekker, New York, 1978, p. 83).

    Google Scholar 

  20. D.T. Colbert, J. Zhang, S.M. McClure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Carter, J.H. Weaver, A.J. Rinzler and R.E. Smalley, Science 266 (1994) 1218.

    Google Scholar 

  21. S. Amelinclx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov and J.B. Nagy, Science 265 (1994) 635.

    Google Scholar 

  22. J.L. Figueiredo, C.A. Bernardo, J.J. Chludzinski and R.T.K. Baker, J. Catal. 110 (1988) 127.

    Google Scholar 

  23. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates and R.J. Waite, J. Catal. 26 (1972) 51.

    Google Scholar 

  24. G.G. Kuvshinov, Yu.I. Mogilnykh, D.G. Kuvshinov, V.I. Zaikovskii and L.B. Avdeeva, Carbon 36 (1998) 87.

    Google Scholar 

  25. J. Guinot, M. Audier, M. Coulon and L. Bonnetain, Carbon 19 (1981) 95.

    Google Scholar 

  26. C. Park, E.S. Engel, A. Crowe, T.R. Gilbert and N.M. Rodriguez, Langmuir 16 (2000) 8050.

    Google Scholar 

  27. V.I. Zaikovskii, V.V. Chesnokov and R.A. Buyanov, Kinet. Catal. 40 (1999) 612.

    Google Scholar 

  28. Y.H. Hu and E. Ruckenstein, J. Catal. 184 (1999) 298.

    Google Scholar 

  29. M.A. Ermakova, D.Yu. Ermakov, G.G. Kuvshinov and L.M. Plyasova, J. Catal. 187 (1999) 77.

    Google Scholar 

  30. A.J.H.M. Kock, P.K. de Bokx, E. Boellaard, W. Klop and J.W. Geus, J. Catal. 96 (1985) 468.

    Google Scholar 

  31. T. Zhang and M.D. Amiridis, Appl. Catal. A: General 167 (1998) 161.

    Google Scholar 

  32. C. Park and M.A. Keane, Solid State Ionics 141–142 (2001) 191.

    Google Scholar 

  33. C. Park and M.A. Keane, Chem. Phys. Chem. 2 (2001) 101.

    Google Scholar 

  34. C. Park and M.A. Keane, Catal. Commun. 2 (2001) 171.

    Google Scholar 

  35. C. Park and M.A. Keane, Langmuir 17 (2001) 8386.

    Google Scholar 

  36. C. Park and M.A. Keane, J. Colloid. Interf. Sci. 250 (2002) 37.

    Google Scholar 

  37. K. Otsuka, H. Ogihara and S. Takenaka, Carbon 41 (2003) 223.

    Google Scholar 

  38. P. Wang, E. Tanabe, K. Ito, J. Jia, H. Morioka, T. Shishido and K. Takehira, Appl. Catal. A: General 231 (2002) 35.

    Google Scholar 

  39. M.J. Toebes, J.H. Bitter, A.J. van Dillen and K.P. de Jong, Catal. Today 76 (2002) 33.

    Google Scholar 

  40. M.A. Ermakova and D.Yu. Ermakov, Catal. Today 77 (2002) 225.

    Google Scholar 

  41. C. Park, N.M. Rodriguez and R.T.K. Baker, J. Catal. 169 (1997) 212.

    Google Scholar 

  42. W.T. Owens, N.M. Rodriguez and R.T.K. Baker, J. Phys. Chem. 96 (1992) 5048.

    Google Scholar 

  43. M.S. Kim, N.M. Rodriguez and R.T.K. Baker, J. Catal. 134 (1992) 253.

    Google Scholar 

  44. K. Tomishige, Y. Chen and K. Fujimoto, J. Catal. 181 (1999) 91.

    Google Scholar 

  45. I. Willems, Z. Konya, J.-F. Colomer, G. van Tendeloo, N. Nagarju, A. Fonseca and J.B. Nagy, Chem. Phys. Lett. 317 (2000) 71.

    Google Scholar 

  46. M. Nath, B.C. Satishkumar, A. Govindaraj, C.P. Vinod and C.N.R. Rao, Chem. Phys. Lett. 317 (2000) 71.

    Google Scholar 

  47. V.V. Chesnakov, V.I. Zarkovskii, R.A. Buyanov, V.V. Molchanov and L.M. Plyasova, Kinet. Catal. 35 (1994) 130.

    Google Scholar 

  48. P.E. Nolan, D.C. Lynch and A.H. Cutler, Carbon 32 (1994) 477.

    Google Scholar 

  49. T. Koyama, Carbon 10 (1972) 757.

    Google Scholar 

  50. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi and H.W. Kroto, J. Phys. Chem. Solids 54 (1993) 1841.

    Google Scholar 

  51. M. Endo, Y.A. Kim, T. Takeda, S.H. Hong, T. Matusita, T. Hayashi and M.S. Dresselhaus, Carbon 39 (2001) 2003.

    Google Scholar 

  52. M. Nath, B.C. Satishkumar, A. Govindaraj, C.P. Vinod and C.N.R. Rao, Chem. Phys. Lett. 322 (2000) 333.

    Google Scholar 

  53. Y. Lu, Z. Zhu, W. Wu and Z. Liu, Carbon 41 (2003) 179.

    Google Scholar 

  54. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang and Y. Qian, Carbon 40 (2000) 2961.

    Google Scholar 

  55. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska and I. Kiricsi, Appl. Catal. A: General 199 (2000) 245.

    Google Scholar 

  56. C. Menini, C. Park, R. Brydson and M.A. Keane, J. Phys. Chem. B 104 (2000) 4281.

    Google Scholar 

  57. C. Menini, C. Park, E.-J. Shin, G. Tavoularis and M.A. Keane, Catal. Today 62 (2000) 355.

    Google Scholar 

  58. P. Albers, K. Seibold, G. Prescher and H. Müller, Appl. Catal. A: General 176 (1999) 135.

    Google Scholar 

  59. D.W. McKee and C.L. Spiro, Carbon 23 (1985) 437.

    Google Scholar 

  60. G. Tavoularis and M.A. Keane, J. Mol. Catal. A: General 142 (1999) 187.

    Google Scholar 

  61. C. Park, C. Menini, J.L. Valverde and M.A. Keane, J. Catal. 211 (2002) 451.

    Google Scholar 

  62. P.E. Anderson and N.M. Rodriguez, Chem. Mater. 12 (2000) 823.

    Google Scholar 

  63. M.S. Kim, N.M. Rodriguez and R.T.K. Baker, J. Catal. 134 (1992) 253.

    Google Scholar 

  64. C. Pham-Huu, N. Keller, L.J. Charbonniere, R. Ziessel and M.J. Ledoux, J. Chem. Soc., Chem. Commun. (2000) 1871.

  65. J. Rostrup-Nielsen and D.L. Trimm, J. Catal. 48 (1977) 155.

    Google Scholar 

  66. R.T. Yang and J.P. Chen, J. Catal. 115 (1989) 52.

    Google Scholar 

  67. I. Alstrup, J. Catal. 109 (1988) 241.

    Google Scholar 

  68. M.P. Manning, J.E. Garmirian and R.C. Reid, Ind. Eng. Chem. Proc. Des. Dev. 21 (1982) 404.

    Google Scholar 

  69. V.V. Chesnokov, V.I. Zaikovskii and R.A. Buyanov, J. Mol. Catal. A: Chemical 158 (2000) 267.

    Google Scholar 

  70. T. Wada, H. Wada and J.F. Elliot, J. Chipman. Metall. Trans. 2 (1971) 2199.

    Google Scholar 

  71. A. Chambers and R.T.K. Baker, J. Catal. 158 (1996) 356.

    Google Scholar 

  72. N. Krishnankutty, N.M. Rodriguez and R.T.K. Baker, J. Catal. 158 (1996) 217.

    Google Scholar 

  73. L.B. Avdeeva, D.I. Kochubey and S.K. Shaikhutdinov, Appl. Catal. A: General 177 (1999) 43.

    Google Scholar 

  74. C. Park and R.T.K. Baker, J. Catal. 179 (1998) 361.

    Google Scholar 

  75. M.A. Ermakova, D.Yu. Ermalov, A.L Chuvilin and G.G. Kuvshinov, J. Catal. 201 (2001) 183.

    Google Scholar 

  76. C.F. Cullis, J.E. Manton, G.B. Thomas and H. Wilman, Acta. Crystallogr. 12 (1959) 382.

    Google Scholar 

  77. C.L. Pieck, E.L. Jablonski, R.J. Verderone and J.M. Parera, Appl. Catal. 56 (1989) 1.

    Google Scholar 

  78. A. Stanislaus and B.H. Cooper, Catal.-Rev. Sci. Eng. 38 (1996) 75.

    Google Scholar 

  79. G. Tavoularis and M.A. Keane, J. Chem. Technol. Biotechnol. 74 (1999) 60.

    Google Scholar 

  80. A. Chambers and R.T.K. Baker, J. Phys. Chem. B 101 (1997) 1621.

    Google Scholar 

  81. A.Yu. Stakheev and L.M. Kustov, Appl. Catal. A: General 188 (1999) 3.

    Google Scholar 

  82. C. Park and R.T.K. Baker, J. Phys. Chem. B 102 (1998) 5168.

    Google Scholar 

  83. I.E. Müller, D.G. Reid, W.K. Hsu, J.P. Hare, H.W. Kroto and D.R.M. Walton, Carbon 35 (1997) 951.

    Google Scholar 

  84. S. Takenaka, H. Ogihara and K. Otsuka, J. Catal. 208 (2002) 54.

    Google Scholar 

  85. J.-W. Snoeck, G.F. Froment and M. Fowles, J. Catal. 169 (1997) 240.

    Google Scholar 

  86. M.A. Keane, Can. J. Chem. 72 (1994) 372.

    Google Scholar 

  87. P.L. WalkerJr., M. Shelef and R.A. Anderson, in: Chemistry and Physics of Carbon, Vol. 1, ed. P.L. WalkerJr. (Marcel Dekker New York, 1968, p.287).

    Google Scholar 

  88. D.W. McKee, in: Chemistry and Physics of Carbon, Vol. 16, eds. P.L. WalkerJr. and P.A. Thrower (Marcel Dekker, (New York, 1981, p.1).

    Google Scholar 

  89. J. Zheng, T.C. Ekström, S.K. Gordeev and M. Jacob, J. Mater. Chem. 10 (2000) 1039.

    Google Scholar 

  90. F.J. Salzano and S. Aronson, J. Chem. Phys. 45 (1966) 2221.

    Google Scholar 

  91. G. Che, B.R. Lakshmi, E.R. Fisher and C.R. Martin, Nature 393 (1998) 346.

    Google Scholar 

  92. Z.-X. Jin, G.Q. Xu and S.H. Goh, Carbon 38 (2000) 1135.

    Google Scholar 

  93. R.S. Lee, H.J. Kirn, J.E. Fischer, A. Thess and R.E. Smalley, Nature 388 (1997) 255.

    Google Scholar 

  94. C. Park, P.M. Patterson and M.A. Keane, Curr. Topics Colloid. Interf. Sci. 5 (2002) 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherukuri, L.D., Yuan, G. & Keane, M.A. Catalytic Growth of Structured Carbon via the Decomposition of Chlorobenzene over Ni/SiO2 . Topics in Catalysis 29, 119–128 (2004). https://doi.org/10.1023/B:TOCA.0000029794.03727.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000029794.03727.ef

Navigation