Topics in Catalysis

, Volume 24, Issue 1–4, pp 137–146 | Cite as

Carbothermal Synthesis of the Nanostructures of Al2O3 and ZnO

  • Gautam Gundiah
  • F.L. Deepak
  • A. Govindaraj
  • C.N.R. Rao
Article

Abstract

Nanostructures of Al2O3 and ZnO have been synthesized by a carbothermal route involving the reaction of the metal or the metal oxide with carbon. In the case of Al2O3, nanowires and nanotubes are obtained starting with Al metal and active carbon or graphite. ZnO nanowires are obtained by the reaction of zinc oxalate or ZnO with active carbon or multiwalled carbon nanotubes. The Al2O3 and ZnO nanostructures obtained have been characterized by X-ray diffraction, electron microscopy and photoluminescence spectroscopy. These nanostructures are likely to be of use as catalyst supports and in other technological applications.

nanowires nanolubes carbothermal synthesis Al2O3 ZnO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Liu, Y. Li, L. Jiang, H. Luo, S. Xiao, H. Fang, H. Li, D. Zhu, J. Xu and B. Xiang, J. Am. Chem. Soc. 124 (2002) 13370.PubMedGoogle Scholar
  2. [2]
    Z. Zhang, R.W. Hicks, T.R. Pauly and T.J. Pinnavaia, J. Am. Chem. Soc. 124 (2002) 1592.PubMedGoogle Scholar
  3. [3]
    H.Y. Zhu, J.D. Riches, and J.C. Barry, Chem. Mater. 14 (2002) 2086.Google Scholar
  4. [4]
    S.S. Berdonosov, S.B. Baronov, Yu. V. Kuzmicheva, D.G. Berdonosova and I.V. Melikhov, Inorg. Mater. 37 (2001) 1037.Google Scholar
  5. [5]
    Z.Q. Yu and Y.W. Du, J. Mater. Res. 13 (1998) 3017.Google Scholar
  6. [6]
    B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick and C.N.R. Rao, J. Mater. Res. 12 (1997) 604.Google Scholar
  7. [7]
    Y. Zhang, J. Liu, R. He, Q. Zhang, X. Zhang and J. Zhu, Chem. Phys. Lett. 360 (2002) 579.Google Scholar
  8. [8]
    G. Hornyak, M. Kroll, R. Pugin, T. Sawitowski, G. Schmid, J.O. Bovin, G. Karsson, H. Hofmeister and S. Hopfe, Chem. Eur. J. 12 (1997) 1951.Google Scholar
  9. [9]
    L. Pu, X. Bao, J. Zou and D. Feng, Angew. Chem. Intl. Ed. 40 (2001) 1490.Google Scholar
  10. [10]
    J. Zou, L. Pu, X. Bao and D. Feng, Appl. Phys. Lett. 80 (2002) 1079.Google Scholar
  11. [11]
    Z.L. Xiao, C.Y. Han, U. Welp, H.H. Wang, W.K. Kwok, G.A. Willing, J.M. Hiller, R.E. Cook, D.J. Miller and G.W. Crabtree, Nano. Lett. 2 (2002) 1293.Google Scholar
  12. [12]
    Z. Yuan, H. Huang and S. Fan, Adv. Mater. 14 (2002) 303.Google Scholar
  13. [13]
    V. Valcarcel, A. Souto and F. Guitian, Adv. Mater. 10 (1998) 138.Google Scholar
  14. [14]
    C.C. Tang, S.S. Fan, P. Li, M. Lamy de la Chapelle and H.Y. Dang, J. Cryst. Growth 224 (2001) 117.Google Scholar
  15. [15]
    J. Zhou, S.Z. Deng, J. Chen, J.C. She and N.S. Xu, Chem. Phys. Lett. 365 (2002) 505.Google Scholar
  16. [16]
    X.S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang and G.S. Wu, J. Phys. Chem., B 106 (2002) 11163.Google Scholar
  17. [17]
    H.C. Lee, H.J. Kim, S.H. Chung, K.H. Lee, H.C. Lee and J.S. Lee, J.Am. Chem. Soc. 125 (2002) 2882.Google Scholar
  18. [18]
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001) 1897.PubMedGoogle Scholar
  19. [19]
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13 (2001) 113.Google Scholar
  20. [20]
    S.C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Skim, E.-K. Suh and C.J. Lee, Chem. Phys. Lett. 363 (2002) 134.Google Scholar
  21. [21]
    S.Y. Li, C.Y. Lee and T.Y. Tseng, J. Cryst. Growth. 247 (2003) 357.Google Scholar
  22. [22]
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh and H.J. Lee, Appl. Phys. Lett. 81 (2002) 3648.Google Scholar
  23. [23]
    J.-S. Lee, M.-I. Kang, S. Kim, M.-S. Lee and Y.-K. Lee, J. Cryst. Growth 249 (2003) 201.Google Scholar
  24. [24]
    M.J. Zheng, L.D. Zhang, G.H. Li and W.Z. Shen, Chem. Phys. Lett. 363 (2002) 123.Google Scholar
  25. [25]
    Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp, Appl. Phys. Lett. 76 (2000) 2011.Google Scholar
  26. [26]
    L. Vayssieres, Adv. Mater. 15 (2003) 464.Google Scholar
  27. [27]
    J. Zhang, L. Sun, H. Pan, C. Liao and C. Yan, New J. Chem. 26 (2002) 33.Google Scholar
  28. [28]
    J.J. Wu and S.C. Liu, Adv. Mater. 14 (2002) 215.Google Scholar
  29. [29]
    W.I. Park, D.H. Kim, S.-W. Jung and G.-C. Yi, Appl. Phys. Lett. 80 (2002) 4232.Google Scholar
  30. [30]
    X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun and J.J. Du, Mater. Res. Bull. 36 (2001) 847.Google Scholar
  31. [31]
    R. Seshadri, A. Govindaraj, H.N. Aiyer, R. Sen, G.N. Subbana, A.R. Raju and C.N.R. Rao, Curr. Sci. 64 (1994) 839.Google Scholar
  32. [32]
    Z.L. Wang and Z. Pan, Adv. Mater. 14 (2002) 1029.Google Scholar
  33. [33]
    P. Gao and Z.L. Wang, J. Phys. Chem., B 106 (2002) 12653.Google Scholar
  34. [34]
    J.Y. Lao, J.Y. Huang, D.Z. Wang and Z.F. Ren, Nano. Lett. 3 (2002) 235.Google Scholar
  35. [35]
    C. Liang, G. Meng, Y. Lei, F. Phillipp and L. Zhang, Adv. Mater. 13 (2001) 1330.Google Scholar
  36. [36]
    G. Gundiah, A. Govindaraj and C.N.R. Rao, Chem. Phys. Lett. 351 (2002) 189.Google Scholar
  37. [37]
    H.Y. Peng, N. Wang, X.T. Zhou, Y.F. Zheng, C.S. Lee and S.T. Lee, Chem. Phys. Lett. 359 (2002) 241.Google Scholar
  38. [38]
    S.M. Zhou, Y.S. Feng and L.D. Zhang, Chem. Phys. Lett. 369 (2003) 610.Google Scholar
  39. [39]
    H. Iwanga, N. Shibata, O. Nittono and M. Kasuga, J. Cryst. Growth. 45 (1978) 228.Google Scholar
  40. [40]
    K. Vanheusdan, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt and B.E. Gnade, J. Appl. Phys. 79 (1996) 7983.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Gautam Gundiah
    • 1
  • F.L. Deepak
    • 1
  • A. Govindaraj
    • 1
  • C.N.R. Rao
    • 1
  1. 1.Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in ChemistryJawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O.BangaloreIndia

Personalised recommendations