Topics in Catalysis

, Volume 24, Issue 1–4, pp 19–28 | Cite as

Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows

Article

Abstract

NMR has long been established as an in situ technique for studying the solid-state structure of catalysts and the chemical processes occurring during catalytic reactions. Increasingly, pulsed field gradient (PFG) NMR and magnetic resonance imaging (MRI) are being exploited in chemical reaction engineering to measure molecular diffusion, dispersion and flow hydrodynamics within reactors. By bringing together NMR spectroscopy, PFG NMR and MRI, we are now able to probe catalysts and catalytic processes from the angstrom-to-centimeter scale. This article briefly reviews current activities in the field of MRI studies applied to catalysts and catalytic reactors. State-of-the-art measurements, which can already be used in real reactor design studies, are illustrated with examples of single-phase flow with and without chemical reaction in a fixed-bed reactor. The ability to obtain high spatial resolution (< 200μm) in images of the internal structure and flow field within reactors is demonstrated, and the potential uses of these data in reactor design and understanding bed fouling phenomena are discussed. In particular, MRI has produced the first detailed measurements of the extent of heterogeneity in the flow field within fixed-bed reactors. The example of a fixed-bed esterification process is used to show how NMR spectroscopy and MRI techniques can be combined to provide spatially resolved information on both hydrodynamics and chemical conversion within a process unit. The emerging area of ultrafast MRI is then highlighted as an area of particular interest. Recent advances have demonstrated that it is possible to record 2D images over timescales of ∼100ms in the magnetically heterogeneous environments typical of heterogeneous chemical reactors. These advances open up opportunities to image many unsteady state processes for the first time. Examples are given of real-time visualization of bubble-train flow in a ceramic monolith and exploring the stability of the gas–liquid distribution as a function of liquid flow rate in a trickle-bed reactor.

magnetic resonance MRI fast imaging two-phase flow chemical reaction chemical reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.Y. Cheah, P. Chiaranussati, M.P. Hollewand and L.F. Gladden, Appl. Catal., A 115 (1994) 147.Google Scholar
  2. [2]
    J.L. Bonardet, T. Domeniconi, P. N'Gokoli-Kekele, M.A. Spinguel-Huet and J. Fraissard, Langmuir 15 (1999) 5836.Google Scholar
  3. [3]
    N.K. Bar, F. Bauer, D.M. Ruthven and B. Balcom, J. Catal. 208 (2002) 224.Google Scholar
  4. [4]
    M.P. Hollewand and L.F. Gladden, Magn. Reson. Imaging 12 (1994) 291.PubMedGoogle Scholar
  5. [5]
    I.V. Koptyug, V.B. Fenelonov, L. Yu. Khitrina, R.Z. Sagdeev and V.N. Parmon, J. Phys. Chem., B 102 (1998) 3090.Google Scholar
  6. [6]
    I.V. Koptyug, L.Yu. Khitrina, Y.I. Arsitov, M.M. Tokarev, K.T. Iskakov, V.N. Parmon and R.Z. Sagdeev, J. Phys. Chem., B 104 (2000) 1695.Google Scholar
  7. [7]
    L. Yu. Khitrina, I.V. Koptyug, N.A. Pakhomov, R.Z. Sagdeev and V.N. Parmon, J. Phys. Chem., B 104 (2000) 1966.Google Scholar
  8. [8]
    I.V. Koptyug, A.V. Kulikov, A.A. Lysova, V.A. Kirillov, V.N. Parmon and R.Z. Sagdeev, J. Am. Chem. Soc. 124 (2002) 9684.PubMedGoogle Scholar
  9. [9]
    M.P. Hollewand and L.F. Gladden, Chem. Eng. Sci. 50 (1995) 309.Google Scholar
  10. [10]
    M.P. Hollewand and L.F. Gladden, Chem. Eng. Sci. 50 (1995) 327.Google Scholar
  11. [11]
    L.F. Gladden, P. Alexander and M.P. Hollewand, AIChE J. 41 (1995) 894.Google Scholar
  12. [12]
    M.P. Hollewand and L.F. Gladden, J. Catal. 144 (1993) 254.Google Scholar
  13. [13]
    U. Tallerek, K. Albert, E. Bayer and G. Guiochon, AIChE J. 42 (1996) 3041.Google Scholar
  14. [14]
    U. Tallerek, F.J. Vergeldt and H. Van As, J. Phys. Chem., B 103 (1999) 7654.Google Scholar
  15. [15]
    U. Tallerek, E. Rapp, H. Van As and E. Bayer, Angew. Chem., Int. Ed. 40 (2001) 1684.Google Scholar
  16. [16]
    A.K. Heibel, T.W.J. Scheenen, J.J. Heiszwolf, H. Van As, F. Kapteijn and J.A. Moulijn, Chem. Eng. Sci. 56 (2001) 5935.Google Scholar
  17. [17]
    M.D. Mantle, A.J. Sederman, S. Raymahasay, E.H. Stitt, J.M. Winterbottom and L.F. Gladden, AIChE J. 48 (2002) 909.Google Scholar
  18. [18]
    I.V. Koptyug, S.A. Altobelli, E. Fukushima, A.V. Matveev and R.Z. Sagdeev, J. Magn. Reson. 147 (2000) 36.PubMedGoogle Scholar
  19. [19]
    A.J. Sederman, M.L. Johns, A.S. Bramley, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 52 (1997) 2239.Google Scholar
  20. [20]
    A.J. Sederman, M.L. Johns, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 53 (1998) 2117.Google Scholar
  21. [21]
    B. Manz, P. Alexander and L.F. Gladden, Phys. Fluids 11 (1999) 259.Google Scholar
  22. [22]
    M.L. Johns, A.J. Sederman, A.S. Bramley, P. Alexander and L.F. Gladden, AIChE J. 46 (2000) 2151.Google Scholar
  23. [23]
    A.J. Sederman and L.F. Gladden, Chem. Eng. Sci. 56 (2001) 2615.Google Scholar
  24. [24]
    E.H.L. Yuen, A.J. Sederman and L.F. Gladden, Appl. Catal., A 232 (2002) 29.Google Scholar
  25. [25]
    S. Sundaresan, AIChE J. 46 (2000) 1102.Google Scholar
  26. [26]
    A.J. Sederman and L.F. Gladden, Magn. Reson. Imaging 19 (2001) 3389.Google Scholar
  27. [27]
    E.H.L. Yuen, A.J. Sederman, F. Sani, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 58 (2003) 613.Google Scholar
  28. [28]
    A.A. Maudsley, S.K. Hilal, W.H. Perman and H.E. Simon, J. Magn. Reson. 51 (1983) 147.Google Scholar
  29. [29]
    R. Kimmich and D. Hoepfel, J. Magn. Reson. 72 (1987) 379.Google Scholar
  30. [30]
    L.F. Gladden, P. Alexander, M.M. Britton, M.D. Mantle, A.J. Sederman and E.H.L. Yuen, Magn. Reson. Imaging 21 (2003) 213.PubMedGoogle Scholar
  31. [31]
    E.H.L. Yuen, Ph.D. Thesis (University of Cambridge), Cambridge, 2003).Google Scholar
  32. [32]
    A.J. Sederman, M.D. Mantle and L.F. Gladden, J. Magn. Reson. 161 (2003) 15.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations