Skip to main content
Log in

Synthesis, Spectral and Electrochemical Studies of Mixed-Ligand Oxovanadium(IV) and Oxovanadium(V) Complexes Incorporating the Tridentate ONO Donor Schiff Base Derived from Acetylacetone and Benzoylhydrazine

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Mixed-ligand oxovanadium(IV) and oxovanadium(V) complexes with a tridentate dinegative ONO donor Schiff base ligand [viz., 4-(1-hydroxybenzylidenehydrazono)-2-penten-2-ol (H2L)] and bidentate NN [viz., 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen): complexes (1) and (2), respectively] or OO[viz., ethylene glycol (H2gol), salicylaldehyde (Hsal) and vanillin (Hvan): complexes (3)(5), respectively] donor ligands have been prepared and characterized by elemental analyses and by i.r., e.p.r., n.m.r., and u.v.–vis. spectroscopies. The complexes with NN donor ligands are one electron paramagnetic, displaying axial e.p.r. spectra and exhibiting two ligand-field transitions in the visible region, whereas the complexes with OO donor ligands are diamagnetic and display only LMCT bands. 1H n.m.r. spectral data indicate that the pentavalent complexes (4) and (5) exist in two isomeric forms [(4A), (4B) and (5A), (5B) in 1:1 and 4:1 ratios, respectively]. The vanadyl(IV) complexes display an irreversible oxidation peak near +0.67 V while among the vanadyl(V) complexes, (3), displays an irreversible reduction peak near −0.20 V and (4) and (5) display a quasi-reversible one electron reduction peak near +0.25 V versus s.c.e. The trend in redox potential values and the selective stabilization of VO2+ and VO3+ motifs have been explained on the basis of the basicity of the bidentate auxiliary ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Harvey, J.M. Arber, R.R. Eady, B.E. Smith, C.D. Garner and S.S. Hasnain, Biochem. J., 266, 929 (1990); J. Chen, J. Christiansen, R.C. Tittsworth, B.J. Hales, S.J. George, D. Coucouvanis and S.P. Cramer, J. Am. Chem. Soc., 115, 5509 (1993).

    Google Scholar 

  2. S. Maceds-Ribeiro, W. Hemrika, R. Revirie, R. Wever and A. Messerschmidt, J. Biol. Inorg. Chem., 4, 209 (1999) and references therein.

    Google Scholar 

  3. K.H. Thompson and C. Orvig, J. Chem. Soc., Dalton Trans., 2885 (2000) and references therein.

  4. A. Butler and J.V. Walker, Chem. Rev., 93, 1937 (1993).

    Google Scholar 

  5. N. Bharti, Shailendra, M.T.G. Garza, D.E. Cruz-Vega, J.C. Garza, K. Saleem, F. Naqvi, M.R. Maurya and A. Azam, Bioorg. Med. Chem. Lett., 12, 869 (2002); M.R. Maurya, S. Khurana, Shailendra, A. Azam, W. Zhang and D. Rehder, Eur. J. Inorg. Chem., 1966 (2003).

    Google Scholar 

  6. J.M. Arber, E. de Boer, C.D. Garner, S.S. Hasnain and R. Wever, Biochemistry, 28, 7968 (1989).

    Google Scholar 

  7. M.A. Ali and S.E. Livingstone, Coord. Chem. Rev., 13, 101 (1974).

    Google Scholar 

  8. D.K. Johnson, T.B. Murphy, N.J. Rose, W.H. Goodwin and L. Pickart, Inorg. Chim. Acta, 67, 159 (1982).

    Google Scholar 

  9. K. Srinivasan and S. Perrier, J. Mol. Catal., 36, 297 (1986).

    Google Scholar 

  10. P.K. Bhattacharya, Proc. Ind. Acad. Sci. (Chem. Sci.), 102, 247 (1990).

    Google Scholar 

  11. J.C. Craliz, J.C. Rub, D. Willis and J. Edger, Nature, 34, 176 (1955).

    Google Scholar 

  12. M.J.M. Campbell, Coord. Chem. Rev., 15, 279 (1975).

    Google Scholar 

  13. (a) J. Chakravarty, S. Dutta, A. Dey and A. Chakravorty, J. Chem. Soc., Dalton Trans., 557 (1994); (b) S.P. Rath, S. Mondal and A. Chakravorty, Inorg. Chim. Acta, 263, 247 (1997).

    Google Scholar 

  14. W. Bansse, E. Ludwig, E. Uhlemann, F. Weller, K. Dehnicke and W. Herrmann, Z. Anorg. Allg. Chem., 613, 36 (1992).

    Google Scholar 

  15. S.P. Yan, G.-L. Wang, H.-G. Wang and X.-K. Yao, Chin. J. Struct. Chem., 11, 47 (1992).

    Google Scholar 

  16. W. Wang, F.-L. Zeng, X. Wang and M.-Y. Tano, Polyhedron, 15, 1699 (1996).

    Google Scholar 

  17. A.A. Diamantis, J.M. Frederiksen and Md. Abdus Salam, M.R. Snow and E.R.T. Tiekink, Aust. J. Chem., 39, 1081 (1986).

    Google Scholar 

  18. W. Wang, X. Wang, H.-X. Liu and M.-Y. Tan, J. Coord. Chem., 36, 49 (1995).

    Google Scholar 

  19. M.R. Maurya, S. Khurana, C. Schulzke and D. Rehder, Eur. J. Inorg. Chem., 779 (2001).

  20. S.-X. Liu and S. Gao, Polyhedron, 17, 81 (1998).

    Google Scholar 

  21. R.A. Rowe and M.M. Johnes, Inorg. Synth., 5, 113 (1957).

    Google Scholar 

  22. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edit., Wiley, New York, 1986.

    Google Scholar 

  23. S.P. Perlepes, D. Nicholls and M.R. Harrison, Inorg. Chim. Acta, 102, 137 (1985).

    Google Scholar 

  24. S. Mondal, S.P. Rath, K.K. Rajak and A. Chakravorty, Inorg. Chem., 37, 1713 (1998) and references therein.

    Google Scholar 

  25. S. Mondal, S.P. Rath, S. Dutta and A. Chakravorty, J. Chem. Soc., Dalton Trans., 99 (1996).

  26. M. Chatterjee, S.P. Ghosh, B.M. Wub and T.C.W. Mak, Polyhedron, 17, 1369 (1998); I. Cavaco, J.C. Pessoa, D. Costa, M.T. Duarte, R.D. Gillard and P. Matias, J. Chem. Soc., Dalton Trans., 149 (1994).

    Google Scholar 

  27. C.R. Cornman, J. Kampf, M.S. Lah and V.L. Pecoraro, Inorg. Chem., 31, 2035 (1992).

    Google Scholar 

  28. G.R. Hausen, T.A. Kabanos, A.D. Keramidas, D. Mentzafos and A. Terzis, Inorg. Chem., 31, 2587 (1992).

    Google Scholar 

  29. N.D. Chasteen, in J. Lawrence, L.J. Berliner and J. Reuben, (Eds.), Biological Magnetic Resonance, Plenum, New York, 1981, vol. 3, p. 53.

  30. C.J. Ballhausen and H.B. Gray, Inorg. Chem., 1, 111 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, T., Bandyopadhyay, C., Bhattacharya, S. et al. Synthesis, Spectral and Electrochemical Studies of Mixed-Ligand Oxovanadium(IV) and Oxovanadium(V) Complexes Incorporating the Tridentate ONO Donor Schiff Base Derived from Acetylacetone and Benzoylhydrazine. Transition Metal Chemistry 29, 444–450 (2004). https://doi.org/10.1023/B:TMCH.0000027457.32094.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000027457.32094.aa

Keywords

Navigation