Skip to main content
Log in

Complex Formation of Ferric Protoporphyrin IX From the Reaction of Hemin with Ammonia and Small Aliphatic Amines

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Complexes of FeIII protoporphyrin IX (FeIIIPPIX) with the amido anion were obtained from the reaction of FeIIIPPIX chloride (hemin) with ammonia and small aliphatic amines under solvent free conditions. The reaction of hemin with gaseous ammonia leads to a pentacoordinated complex at the iron site, PPIX–Fe–NH2, plus NH4Cl, while at the peripheral propionic acidic groups ammonium carboxylate is formed. The corresponding stoichiometry (1:4 molar ratio of hemin to ammonia) was confirmed by the adsorption isotherm. Analogous reactions and complex formation were observed with EtNH2 and Et2NH. These reactions were monitored using X-ray diffraction (XRD), and i.r. and Mössbauer spectroscopies. The isomer shift and quadrupole splitting values of the resulting complexes are in correspondence with the strong σ-donor character of the amido anion linked to the iron atom. For comparison, the Mössbauer parameters for hemin complexes with arginine and 2-aminoguanidine, which also have pure σ interaction with the porphyrin iron, were included and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Epstein, D.K. Straub and C. Maricondi, Inorg. Chem., 6, 1720 (1967).

    Google Scholar 

  2. O.K. Medhi and J. Silver, J. Chem. Soc., Dalton Trans., 263 (1990).

  3. O.K. Medhi and J. Silver, J. Chem. Soc., Dalton Trans., 555 (1990).

  4. P.J. Marsh, J. Silver, M.C.R. Symons and F.A. Taiwo, J. Chem. Soc., Dalton Trans., 2361 (1996).

  5. J. Silver, P.J. Marsh, M.C.R. Symons, D.A. Svistunenko, C.S. Frampton and G.R. Fern, Inorg. Chem., 39, 2874 (2000).

    Google Scholar 

  6. O.Q. Munro, P.S. Madlala, R.A.F. Warby, T.B. Seda and G. Hearne, Inorg. Chem., 38, 4724 (1999).

    Google Scholar 

  7. C.E. Castro, M. Jamin, W. Yokoyama and R. Wade, J. Am. Chem. Soc., 108, 4179 (1986).

    Google Scholar 

  8. M.T. Ahmet, G. Al-Jaff, J. Silver and M.T.W. Wilson, Inorg. Chim. Acta, 183, 43 (1991).

    Google Scholar 

  9. G. Al-Jaff, J. Silver and M.T.W. Wilson, Inorg. Chim. Acta, 176, 307 (1990).

    Google Scholar 

  10. W.R. Scheidt, S.R. Osvath and Y.J. Lee, J. Am. Chem. Soc., 109, 1958 (1987).

    Google Scholar 

  11. A. Paneque, J. Fernandez, E. Reguera and H. Yee-Madeira, Transition Met. Chem., 26, 76 (2001).

    Google Scholar 

  12. A. Paneque, E. Reguera, J. Fernandez and H. Yee, J. Fluor. Chem., 13, 1 (2002).

    Google Scholar 

  13. A. Paneque, J. Fernandez, E. Reguera and H. Yee-Madeira, Spect. Lett., 36, 83 (2003).

    Google Scholar 

  14. Ya. Guerasimov, V. Dreving, E. Eriomin, A. Kiseliov, V. Lebedev, G. Panchenkov and A. Shliguin, in Course of Physical Chemistry, MIR, Moscow, 1971, vol. 1, Chapter XVI.

    Google Scholar 

  15. M. Blume and J.A. Tjon, Phys. Rev., 165, 446 (1968).

    Google Scholar 

  16. Powder Diffraction Files (PDF-Data Base), International Center for Diffraction Data, 12 Campus Boulevard, Newton Square, PA 19073-3273, USA, 2002.

  17. M. Blume, Phys. Rev. Lett., 18, 305 (1967).

    Google Scholar 

  18. A.J. Bearden, T.H. Moss, W.S. Caughey and C.A. Beaudreau, Proc. Natl. Acad. Sci. (USA), 53, 1246 (1965).

    Google Scholar 

  19. J. Silver and B. Lukas, Inorg. Chim. Acta, 78, 219 (1983).

    Google Scholar 

  20. A.B. Hoffman, D.M. Collins, V.W. Day, E.B. Fleischer, T.S. Srivastava and J.L. Hoard, J. Am. Chem. Soc., 94, 3620 (1972).

    Google Scholar 

  21. J. Fernandez, L. Castellanos, H. Yee-Madeira and E. Reguera, J. Solid State Chem., 147, 561 (1999).

    Google Scholar 

  22. F.A. Cotton and G. Wilkinson, in Advanced Inorganic Chemistry, Wiley Intersciences, 1971, Chapter 12.

  23. P.L. Holland, R.A. Andersen, R.G. Bergman, J. Huang and S.P. Nolan, J. Am. Chem. Soc., 119, 12800 (1997).

    Google Scholar 

  24. A.W. Kaplan, J.C.M. Ritter and R.G. Bergman, J. Am. Chem. Soc., 120, 6828 (1998).

    Google Scholar 

  25. J.R. Fulton, M.W. Bouwkamp and R.G. Bergman, J. Am. Chem. Soc., 122, 8799 (2000).

    Google Scholar 

  26. J.R. Fulton, A.W. Holland, D.J. Fox and R.G. Bergman, Acc. Chem. Res., 35, 44 (2002).

    Google Scholar 

  27. J.R. Fulton, S. Sklenak, M.W. Bouwkamp, and R.G. Bergman, J. Am. Chem. Soc., 124, 4722 (2002).

    Google Scholar 

  28. H. Grutzmacher, H. Schonberg, H. Pritzhow, E. Bill, V. Schunemann, S. Ober, and A.X. Trautwein, J. Inorg. Biochem., 59, 509 (1995).

    Google Scholar 

  29. J. Danon, in Applications of the Mössbauer Effect in Chemistry and Solid State Physics, IAEA Publications, Vienna, 1966, p. 89.

    Google Scholar 

  30. .N. Greenwood and T.C. Gibb, in Mössbauer Spectroscopy, Chapman and Hall Ltd, London, 1971, Chapter 5.

    Google Scholar 

  31. A. Paneque, J. Fernandez, E. Reguera and H. Yee-Madeira, Synth. React. Inorg. Metal–Org. Chem., 33, 1405 (2003).

    Google Scholar 

  32. H. Inoue, Y. Matsubayashi, T. Shirai and E. Fluck, Hyperf. Interact., 29, 1403 (1986).

    Google Scholar 

  33. P. Hambright and A.J. Bearden, in K.M. Smith, (Ed.) Porphyrins and Metalloproteins, Elsevier Sci. Publ. Co., Amsterdam, 1975, p. 540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reguera, E., Balmaseda, J., Fernández-Bertrán, J. et al. Complex Formation of Ferric Protoporphyrin IX From the Reaction of Hemin with Ammonia and Small Aliphatic Amines. Transition Metal Chemistry 29, 451–456 (2004). https://doi.org/10.1023/B:TMCH.0000027455.71173.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000027455.71173.d3

Keywords

Navigation