Skip to main content
Log in

Kinetics and mechanism of the interaction of azide with [(H2O)(tap)2RuORu(tap)2-(H2O)]2+ ion at physiological pH

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The title reaction has been studied spectrophotometrically in aqueous medium as a function of [substrate complex], [ligand], pH and temperature at constant ionic strength. At the physiological pH (7.4) the interaction with azide shows two distinct consecutive steps, i.e., it shows a non-linear dependence on the concentration of N3 ; both processes are [ligand]-dependent. The rate constant for the processes are: k 1∼10−3 s−1 and k 2∼10−5 s−1. The activation parameters calculated from Eyring plots are: ΔH 1 = 14.8 ± 1 kJ mol−1, ΔS 1 = −240 ± 3 J K−1 mol−1, ΔH 2 = 44.0 ± 1.5 kJ mol−1 and ΔS 2 = −190 ± 4 J K−1 mol−1. Based on the kinetic and activation parameters an associative interchange mechanism is proposed for the interaction process. From the temperature dependence of the outersphere association equilibrium constant, the thermodynamic parameters calculated are: ΔH 1 0 = 4.4 ± 0.9 kJ mol−1, ΔS 1 0 = 64 ± 3 J K−1 mol−1 and ΔH 2 0 = 14.2 ± 2.9 kJ mol−1, ΔS 2 0 = 90 ± 9 J K−1 mol−1, which gives a negative ΔG 0 value at all temperatures studied, supporting the spontaneous formation of an outersphere association complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Rosenberg, L. Vancamp and T. Krigas, Nature (London), 205, 698 (1965).

    Google Scholar 

  2. B. Rosenberg, L. Vancamp, J.E. Trosko and V.H. Mansour, Nature (London), 222, 385 (1969).

    Google Scholar 

  3. J.A. Broomhead, D.P. Fairlie and M.W. Whitehouse, Chem.-Biol. Interact., 31, 113 (1980).

    Google Scholar 

  4. M.J. Cleare, J. Clin. Hematol. Oncol., 7, 1 (1977).

    Google Scholar 

  5. P. Umapathy, Coord. Chem. Rev., 95, 129 (1989).

    Google Scholar 

  6. P. Kopt-Maier and H. Kopt, Naturwissenschaften, 73, 239 (1986).

    Google Scholar 

  7. M.J. Clarke, in A.E. Martell (Ed.), Inorganic Chemistry in Biology and Medicine, ACS Symp. Ser 140, American Chemical Society, Washington DC, 1980, p. 157 and refs cited therein.

    Google Scholar 

  8. M.J. Clarke, Met. Ions. Biol. Syst., 11, 231 (1980).

    Google Scholar 

  9. R.E. Yasbin, G.R. Matthews and M.J. Clarke, Chem. Biol. Interact., 31, 355 (1980).

    Google Scholar 

  10. J. Reedijk, Pure Appl. Chem., 59, 181 (1987).

    Google Scholar 

  11. M. Zhao and M.J. Clarke, J. Biol. Inorg. Chem., 4, 325 (1999).

    Google Scholar 

  12. E. Galardon, P. Lc Maux, A. Bondon and G. Simonncaux, Tetrahedron: Asymmetry, 10, 4203 (1999).

    Google Scholar 

  13. D.R. Frasca and M.J. Clarke, J. Am. Chem. Soc., 121, 8523 (1999).

    Google Scholar 

  14. V.G. Povsc and J.A. Olabc, Transition Met. Chem., 23, 657 (1998).

    Google Scholar 

  15. B.K. Ghosh and A. Chakravorty, Coord. Chem. Rev., 95, 239 (1989).

    Google Scholar 

  16. S. Goswamy, A.R. Chakraborty and A. Chakroborty, Inorg. Chem., 20, 2246 (1981).

    Google Scholar 

  17. S. Goswamy, A.R. Chakraborty and A. Chakroborty, Inorg. Chem., 22, 603 (1983).

    Google Scholar 

  18. J.A. Weyh and R.E. Hamm, Inorg. Chem., 8, 2298 (1969).

    Google Scholar 

  19. L.G. Sillen and A.E. martell, Stability Constants of Metal Ion Complexes, Special Publication No. 17, p. 160, Table no. 31, The Chemical Society, London, 1964.

    Google Scholar 

  20. B. Mahanti and G.S. De, Transition Met. Chem., 17, 23 (1992).

    Google Scholar 

  21. S.J. Raven and T.J. Meyer, Inorg. Chem., 27, 4478 (1988) and refs cited therein.

    Google Scholar 

  22. W. Kutner, J.A. Gilbert, A. Tomaszewski, T.J. Meyer and R.W. Murry, J. Electroanal. Chem., 205, 185 (1986).

    Google Scholar 

  23. S.W. Gersten, J. Samuels and T.J. Meyer, J. Am. Chem. Soc., 104, 4029 (1982).

    Google Scholar 

  24. P. Ghosh and A. Chakravorty, Inorg. Chem., 23, 2242 (1984).

    Google Scholar 

  25. J. Strahle, Comm. Inorg. Chem., 4, 295 (1985) and references therein.

    Google Scholar 

  26. G.A. Jeffrey, An introduction to Hydrogen bonding, Oxford University Press, Oxford 1997.

    Google Scholar 

  27. G.R. Desiraju and T. Steiner, The Weak Hydrogen Bonding in Structural Chemistry and Biology, Oxford University Press, Oxford, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, H., Ghosh, A.K. & Ghosh, B.K. Kinetics and mechanism of the interaction of azide with [(H2O)(tap)2RuORu(tap)2-(H2O)]2+ ion at physiological pH. Transition Metal Chemistry 29, 24–30 (2004). https://doi.org/10.1023/B:TMCH.0000014478.35518.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000014478.35518.8f

Keywords

Navigation