Skip to main content
Log in

Porosity Imaging in Porous Media Using Synchrotron Tomographic Techniques

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper describes novel uses of synchrotron radiation in examining porosity distributions within porous media. Tomographic energy dispersive diffraction imaging and Tomographic X-ray fluorescence have been combined within one measurement method and used to highlight the porosity distribution in a typical sample of English Chalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, H. W., Gale, A. S., Mortimore, R. N., Swiecicki, A. and Wood, C. J.: 1983, The Coniacian-Maastrictian stages of the United Kingdom, with particular reference to southern England, Newsl. Stratigr. 12(1), 29–42.

    Google Scholar 

  • Barker, J.A.: 1993, Modelling groundwater flow and transport in the Chalk, in: The Hydrogeology of the Chalk of North-West Europe, Oxford Science Publications, New York, pp. 59–66.

    Google Scholar 

  • Barnes, P., Colston, S. L., Craster, B., Hall, C., Jupe, A. C., Jacques, S. D. M., Cockcroft, J. K., Morgan, S., Johnson, M., O'Connor, D. and Bellotto, M.: (2000), Time and space-resolved dynamic studies on ceramic and cementitious materials J. Syncr. Rad. 7(3), 167–177.

    Article  Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New York.

    Google Scholar 

  • Bibby, R.: 1981, Mass transport of solutes in dual-porosity media, Water Resources Res. 17, 1075–1081.

    Google Scholar 

  • Binley, A., Henry-Poulter, S. and Shaw, B.: 1996a, Examination of solute transport in an undisturbed soil column using electrical resistance tomography, Water Resources Res. 32, 763–769.

    Article  Google Scholar 

  • Binley, A., Shaw, B. and Henry-Poulter, S.: 1996b, Flow pathways in porous media: Electrical resistance tomography and dye staining image verification, Meas. Sci. Technol. 7, 384–390.

    Article  Google Scholar 

  • Black, J. H. and Kipp, K. L.: 1983, Movement of tracers through a dual-porosity media-experiments and modeling in the Cretaceous Chalk, England, J. Hydrol. 62, 287–312.

    Article  Google Scholar 

  • Bloomfield, J. P., Brewerton, L. J. and Allen, D. J.: 1995, Regional trends in matrix porosity and dry density of the Chalk of England, Q. J. Eng. Geol. 28, S131–S142.

    Google Scholar 

  • Brooks, J. and Glennie, K. W.: 1987, Petroleum geology of North West Europe, in: Proceedings of the 3rd Conference, Graham & Trotman, London, UK, 2 Vol. Xxiii + 1219 pp.

  • Buras, B. and Gerward, L.: 1989, Application of X-ray energy dispersive diffraction for characterization of materials under high pressure, Prog. Cryst. Growth Charact. 18, 93–138.

    Article  Google Scholar 

  • Case, C. M.: 1994, Physical Principles of Flow in Unsaturated Porous Media, Oxford Monographs on Geology and Geophysics No. 26, Oxford University Press Inc., New York.

    Google Scholar 

  • Colston, S. L. Jupe, A. C. and Barnes, P.: 2000, Synchrotron radiation tomographic energydispersive diffraction imaging, in: D. C. Creagh, and D. A. Bradley (eds.), Radiation in Art and Archaemotry, Elsevier Science, pp. 129–150.

  • Giessen, B. C. and Gordon, G. E.: 1968, X-ray diffraction: New high-speed technique based on X-ray spectrography, Science 159, 973.

    Google Scholar 

  • Håkansson, E., Bromley, R., and Perch-Nielson, K.: 1974, Maastrichtian chalk of north-west Europe-a pelagic shelf sediment. Pelagic sediments: on land and under water, Spec. Pub. Int. Assoc. Sed., No. 1, pp. 211–223.

    Google Scholar 

  • Hall, C., Barnes, P., Cockcroft, J. K., Colston, S. L., Hausermann, D., Jacques, S. D. M., Jupe, A. C. and Kunz, M.: 1998, Synchrotron radiation energy-dispersive diffraction tomography, Nucl. Instrum. & Meth. Phys. Res.B 140, 253–257.

    Google Scholar 

  • Hancock, J. M.: 1975, The sequence of facies in the Upper Cretaceous of northern Europe compared with that in the western interior. The Cretaceous System in the Western Interior of North America, Spec. Papers of Geol. Assoc. of Canada 13, pp. 83–118.

    Google Scholar 

  • Hancock, J. M.: 1993, The formation and diagenesis of chalk, in: The Hydrogeology of the Chalk of North-West Europe, Oxford Science Publications, New York, pp. 14–34.

    Google Scholar 

  • ISRM: 1972, Suggested Methods for Determining Water Content, Porosity, Density, Absorption and Related Properties, and Swelling and Slake-Durability Index Properties, International Society for Rock Mechanics Publications.

  • Journel, A. G. and Huijbregts, CH. J.: 1981, Mining Geostatistics, Academic Press, New York.

    Google Scholar 

  • Klug, H. P. and Alexander, L. E.: 1974, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. J. Wiley & Sons, New York.

    Google Scholar 

  • Liaw, H.-K., Kulkarni, R., Chen, S. and Watson, A. T.: 1996, Characterization of fluid distributions in porous media by NMR techniques, AIChE J. 42(2), 538–546.

    Article  Google Scholar 

  • Mortimore, R. N.: 1997, The Chalk of Sussex and Kent, Geologists' Association Guide No. 57.

  • Mortimore, R. N.: 1990, The Relationship Between Texture, Density and Strength of Chalk, Thomas Telford, London, pp. 109–132.

    Google Scholar 

  • Oliver, M. A. and Webster, R.: 1990, Kriging: a method of interpolation for geographical information system, Int. J. Geogr. Inf. Sys. 4(3), 313–332.

    Google Scholar 

  • Olsen, P. A., Binley, A., Henry-Poulter, S. and Tych, W.: 1999, Characterising solute transport in undisturbed soil cores using electrical and X-ray tomographic methods, Hydrol. Process. 13, 211–221.

    Article  Google Scholar 

  • Price, M., Bird, M. J. and Foster, S. S. D.: 1976, Chalk pore-size measurements and their significance, Water Serv. 80, 596–600.

    Google Scholar 

  • Price, M., Downing, R.A. and Edmunds, W.M.: 1993, The Chalk as an aquifer, in: The Hydrogeology of the Chalk of North-West Europe, Oxford Science Publications, New York, pp. 35–58.

    Google Scholar 

  • Reichert, B., Hötzl, H. and Witthüser, K.: 2001, Transport and attenuation processes in the chalk matrix, in: FRACFLOW Final Report: Contaminant Transport, Monitoring Techniques, and Remediation Strategies in Cross European Fractured Chalk, European Commission Contract No.: ENV4-CT97-0441, pp. 66–77.

  • Ritter, H. L. and Drake, L. C.: 1945, Pore-size distribution in porous materials, Ind. Engng. Chem. Anal. 17, 782–786.

    Google Scholar 

  • Scholle, P. A.: 1977, Chalk diagenesis and its relation to petroleum exploration; oil from chalks, a modern miracle? Bull. Am. Assoc. Petrol. Geol. 61, 982–1009.

    Google Scholar 

  • Scholle, P. A., Arthur, M. A. and Ekdale, A. A.: 1983, Pelagic environments, Carbonate Depositional Environments, Mem. Am. Assoc. Petrol. Geol. 33, 619–691.

    Google Scholar 

  • Stössel, R. K. and Hannor, J. S.: 1975, A nonsteady state method for determining diffusion coefficients in porous media. J. Geophys. Res. 80, 4979–4982.

    Google Scholar 

  • Williams, G. M. and Higgo, J. J. W.: 1994, In situ and laboratory investigations into contaminant migration, J. Hydrol. 159, 1–25.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betson, M., Barker, J., Barnes, P. et al. Porosity Imaging in Porous Media Using Synchrotron Tomographic Techniques. Transport in Porous Media 57, 203–214 (2004). https://doi.org/10.1023/B:TIPM.0000038264.33451.4a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TIPM.0000038264.33451.4a

Navigation